
StackSimplify

AWS Elastic Beanstalk Masterclass

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

AWS Elastic Beanstalk
Masterclass

Course Contents

StackSimplifyKalyan Reddy Daida

AWS Elastic Beanstalk

Application#1: User Management Application #2: Product Management

Environments

Dev QA Staging Prod

Environments

Dev QA Staging Prod

Elastic Beanstalk – First Steps

StackSimplifyKalyan Reddy Daida

Dashboard

Configuration

Logs

Health

Monitoring

Alarms

AWS Elastic Beanstalk
Environment

Managed
Updates

Events

Tags

Actions

Save Configuration

Load Configuration

Swap Environment URLs

Clone Environment

Clone with Latest Platform

Abort Current Operation

Restart App Server(s)

Rebuild Environment

Terminate Environment

Restore Terminated Environment
(From Applications screen)

EB Environment
Features

StackSimplifyKalyan Reddy Daida

AWS Elastic Beanstalk
Environment

Software (Logs, Env)

Security

Managed Updates

Notifications

Monitoring

Database

Instances

Network

Capacity

Load Balancers

Rolling Updates &
Deployments

S3 Bucket

X-Ray

CloudWatch Elastic Block
Store (EBS)

Elastic Load
Balancing

AWS IAM

AWS Simple
Notification

Service

AWS VPC

AWS RDS

AWS EC2 Auto
Scaling

AWS EC2

Configuration

CloudWatch

AWS EC2

EB
Deployment

Elastic Beanstalk Environment - Configuration

StackSimplifyKalyan Reddy Daida

AWS Elastic Beanstalk

Application#1: User Management Application #2: Product Management

Environments

Dev QA Staging Prod

Environments

Dev QA Staging Prod

Capacity &
Load Balancing

AWS CloudWatch

Instance

Software / Logs

AWS X-Ray

AWS CloudWatch

AWS S3 Bucket

Instances

AWS CloudWatch

Elastic Block Store (EBS)

Instance AMI Auto Scaling

Elastic Load Balancing

Rolling Updates &
Deployments

Security Monitoring Network

Database

Instance AMI

Elastic Load Balancing

Deployment

Managed Updates
Instance

AMI

AWS IAM

Role

AWS CloudWatch

Notifications

AWS Simple
Notification

Service

Amazon VPC

Amazon RDS

AWS CloudFront AWS CloudTrail

AWS Config AWS DynamoDB

AWS ElastiCache AWS Elastic File
System

Additional Integrations

StackSimplifyKalyan Reddy Daida

Application Load Balancer

Elastic Beanstalk container

EC2 Instance 1

/app1 – Port80

/app2 – Port81

EC2 Instance 2

/app1 – Port80

/app2 – Port81

0

Port 80

Port 443

Listeners

App1
Port 80

Health Check

App2
Port 81

Health Check

Processes

Application Load Balancer (ALB)

Rules

Name: default
Priority: default

Path: /*

Name: app2
Priority: 1

Path: /app2User

StackSimplifyKalyan Reddy Daida

Rolling Updates & Deployments

Elastic Beanstalk
Environment

Application
Deployments

All at Once

Configuration
Updates

Rolling

Rolling with
additional batch

Immutable

Disabled

Rolling based on
Health

Rolling based on
Time

Immutable

Blue / Green
Deployments

StackSimplifyKalyan Reddy Daida

Which is the best Application Deployment Option?

Elastic Beanstalk
Environment

Application
Deployments

All at Once

Rolling

Rolling with
additional batch

Immutable

Blue / Green
Deployments

• Service disruption during deployments

• In case of deployment failure, manual intervention
is required

• It ends up as partially completed deployment

• Immutable deployments can prevent issues caused
by partially completed rolling deployments.

• If the new instances don't pass health checks,
Elastic Beanstalk terminates them, leaving the
original instances untouched.

• This is useful for smaller applications whose other
aws services integration scope is small.

StackSimplifyKalyan Reddy Daida

Rolling Updates – Configuration Updates
Elastic Beanstalk

Environment

Configuration
Types

Replaces EC2
Instances

No Impact to
EC2 Instances

• Load Balancer Listener changes
• Load Balancer Health Status URL changes
• Environment Properties addition
• Add Notifications

• Keypair change
• EC2 Instance Type change from t2.micro to

something else
• Apply Managed Updates

StackSimplifyKalyan Reddy Daida

Rolling Updates - Configurations
Elastic Beanstalk

Environment

Configuration Updates
(Rolling Update Type)

Disabled
Rolling based on

Health
Rolling based on

Time Immutable

• Updates
applied all at
once

• Instance
replacement
will be
triggered

• Service
Disruption

• Updates happen in
batches

• Minimum number of
instances will be in
service all times

• Moves to next batch
once the current bacth
health check passes

• Updates happen in
batches

• Minimum number of
instances will be in
service all times

• Moves to next batch
once the Pause Time
reaches

• Same as Immutable
Application
Deployments

StackSimplifyKalyan Reddy Daida

VPC

AWS Cloud

Availability Zone : us-east-2a Availability Zone: us-east-2b

Auto Scaling group

RDS Database Service

Private subnet

Public subnet

Private subnet

RDS MySQL Database

EC2 Instance

NAT Gateway Elastic Load Balancer

10.0.10.0/24

10.0.30.0/24

10.0.50.0/24

Route 53

Private subnet

Public subnet

Private subnet

RDS MySQL Database

EC2 Instance

NAT GatewayElastic Load Balancer

10.0.20.0/24

10.0.40.0/24

10.0.60.0/24

Elastic Beanstalk
Endpoint

Internet
Gateway

User

Public Routes
Destination Target
10.0.0.0/16 local
0.0.0.0/0 IGW

Private Instance 2a Routes
Destination Target
10.0.0.0/16 local
0.0.0.0/0 NAT-2a-GW

Private Instance 2b Routes
Destination Target
10.0.0.0/16 local
0.0.0.0/0 NAT-2b-GW

http://devapi31.stacksimplify.com

VPC Design

StackSimplifyKalyan Reddy Daida

Option-1: RDS Database part of
Elastic Beanstalk

Environment: EB + RDS

EC2 Instance

Application
Elastic

IP Address

AWS Cloud

EC2 Security group

Application: User Management

Amazon RDS

RDS Security
group

3306

User

80

Environment: EB

EC2 Instance

Application
Elastic

IP Address

AWS Cloud

EC2 Security group

Application: User Management

Amazon RDS

RDS Security group

3306

User

80

Option-2: RDS Database external
to Elastic Beanstalk

StackSimplifyKalyan Reddy Daida

VPC

AWS Cloud

Availability Zone : us-east-2a Availability Zone: us-east-2b

Auto Scaling group

RDS Database Service

Private subnet

Public subnet

Private subnet

RDS MySQL Database

EC2 Instance

NAT Gateway Elastic Load Balancer

10.0.10.0/24

10.0.30.0/24

10.0.50.0/24

Route 53

Private subnet

Public subnet

Private subnet

RDS MySQL Database

EC2 Instance

NAT GatewayElastic Load Balancer

10.0.20.0/24

10.0.40.0/24

10.0.60.0/24

Elastic Beanstalk
Endpoint

Internet
Gateway

User http://devapi31.stacksimplify.com
CloudFront

S3 Bucket
Static Site - ReactJs

Route 53

https://fullstackdemo.stacksimplify.com

http://devapi31.stacksimplify.com

Full Stack Application
Deployment & CI CD

StackSimplifyKalyan Reddy Daida

Stages in Release Process

Source Build ProductionTest

StackSimplifyKalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +
Third Party

AWSCodeCommit AWSCodeBuild CodeDeploy AWSX-Ray Amazon
CloudWatch

AWSCodePipeline

Elastic
Beanstalk

StackSimplifyKalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +
Third Party

AWSCodeCommit AWSCodeBuild AWSX-Ray Amazon
CloudWatch

AWSCodePipeline

Elastic
Beanstalk

StackSimplifyKalyan Reddy Daida

AWS CodeBuild

AWS CodeCommit
Amazon Simple Storage

Service (S3) GitHub GitHub Enterprise Bitbucket

Source

Amazon Simple Storage
Service (S3)

Build Artifacts

Amazon EC2 Container
Registry

AWS Managed Image

External Container
Registry (Docker

Hub)

Build Environment

Amazon CloudWatch

Build Logs

AWS CodeBuild Architecture

Amazon Simple Notification
Service

Build Notifications

StackSimplifyKalyan Reddy Daida

AWS CodePipeline

AWS CodeCommit

Amazon EC2 Container
Registry

Simple Storage
Service (S3)

GitHub

AWS CodeBuild

Jenkins

AWS CloudFormation

AWS CodeDeploy

AWS Elastic Beanstalk

AWS Service Catalog

Amazon Elastic Container
Service

Amazon Elastic Container
Service (Blue/Green)

Simple Storage
Service (S3)

Source Build Deploy

Amazon CloudWatch

GitHub Webhooks

Monitor Source Changes

AWS CodePipeline Architecture

StackSimplifyKalyan Reddy Daida

CodeCommit - Steps

AWS CodeCommit

AWS Cloud

Local Git
Repo

push

Developer

GitHub

Clone

AWS Cloud

Local Git
Repo

Developer

push

AWS CodeCommit

AWS CodeBuild Simple Storage
Service (S3)

Commit code changes

CodeBuild - Steps

StackSimplifyKalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

Commit code changes

dev

EC2 Instance

Application

Production

EC2 Instance-1

Application

Elastic Beanstalk Environments

EC2 Instance-2

Application

Staging

EC2 Instance-1

Application

EC2 Instance-2

Application

CodeCommit CodeBuild Simple Storage
Service (S3)

Elastic
Beanstalk

CloudWatch

Simple Notification
Service

CodePipeline

CI CD Process

Authorized
ApproverAmazon RDS

CodePipeline
Steps

StackSimplifyKalyan Reddy Daida

• eb init
• eb status
• eb events
• eb health
• eb open
• eb list
• eb list –all
• eb terminate
• eb abort

EB CLI Commands

• eb clone
• eb swap
• eb appversion
• eb logs
• eb scale
• eb deploy
• eb deploy –staged
• eb codesource

codecommit

StackSimplify

Elastic Beanstalk – Custom Platforms

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
First Steps

StackSimplifyKalyan Reddy Daida

• We can quickly deploy and manage applications in the AWS Cloud
without having to learn more about the infrastructure that runs
those applications.

• In simple terms, we can consider learning Elastic Beanstalk as
starting steps for AWS Cloud.

• Elastic Beanstalk reduces management complexity without
restricting choice or control.

• We simply upload our application, and Elastic Beanstalk
automatically handles the details of capacity provisioning, load
balancing, scaling, and application health monitoring.

Elastic Beanstalk

StackSimplifyKalyan Reddy Daida

AWS Elastic Beanstalk

Application#1: User Management Application #2: Product Management

Environments

Dev QA Staging Prod

Environments

Dev QA Staging Prod

Elastic Beanstalk – First Steps

StackSimplifyKalyan Reddy Daida

• Step-1: Create Application
• Step-2: Create Environment

• Environment Type: Webserver
• Preconfigured Platform: Java
• Application Code: Sample Application
• Test

• Step-3:Deploy a spring boot Rest API application
• Jar file name: eb-usermgmt-h2.jar
• Understand about

• Application Versions
• Version Life Cycle

• Step-4: Test the REST API’s using postman
• Step-5: Associate Keypair to login to ec2 instance and understand the behavior

• Existing EC2 instance gets terminated and new instance provisions immediately.

Elastic Beanstalk – First Steps

StackSimplifyKalyan Reddy Daida

What happened in the background when a new
environment is created using Elastic Beanstalk?

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk container

EC2 Instance

Application
Elastic IP Address

AWS Cloud

Elastic Beanstalk Pre-Configured Platforms

Glassfish Go Python

Docker Multi Container
Docker

Pre-Configured Docker

Generic

Java Go .Net
(Windows/IIS)

Tomcat

Node.js Ruby PHP Python

EB Packer
Builder

Pre-Configured

AWS Elastic Beanstalk

Amazon Simple Storage
Service (S3)

Security group

Environment: dev1

Application: User Management

StackSimplifyKalyan Reddy Daida

• Step-1: Verify S3 for uploaded artifacts (jar file)
• Step-2: Verify EC2 Instance

• Roles
• Security Groups (Port 22)
• Elastic IP (Per region default limit of elastic IP is 5)

• Step-3: Login to EC2 Instance
• Verify /opt/elasticbeanstalk (appsource)
• Verify /var/app/current
• Verify logs in ec2 instance /var/log

• eb-*.log
• web*.log
• cloud-init.log

• Verify logs via EB Console

What happened in the back ground?

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
Environment

Features

StackSimplifyKalyan Reddy Daida

Dashboard

Configuration

Logs

Health

Monitoring

Alarms

AWS Elastic Beanstalk
Environment

Managed
Updates

Events

Tags

Actions

Save Configuration

Load Configuration

Swap Environment URLs

Clone Environment

Clone with Latest Platform

Abort Current Operation

Restart App Server(s)

Rebuild Environment

Terminate Environment

Restore Terminated Environment
(From Applications screen)

EB Environment
Features

StackSimplifyKalyan Reddy Daida

Managed Updates – Immutable Environment Updates

Auto Scaling group

EC2 Instance 1 EC2 Instance 2 EC2 Instance 3 EC2 Instance 4

Main Autoscaling Group

Auto Scaling group

EC2 Instance 5 EC2 Instance 6 EC2 Instance 7 EC2 Instance 8

Temporary Autoscaling Group

Elastic Load Balancing

Environment: devapi1

StackSimplifyKalyan Reddy Daida

Managed Updates – Immutable Environment Updates

Auto Scaling group

EC2 Instance 1 EC2 Instance 2 EC2 Instance 3 EC2 Instance 4

Main Autoscaling Group

EC2 Instance 5 EC2 Instance 6 EC2 Instance 7 EC2 Instance 8

Environment: devapi1

Elastic Load Balancing

StackSimplifyKalyan Reddy Daida

Managed Updates – Immutable Environment Updates

Auto Scaling group

EC2 Instance 1 EC2 Instance 2 EC2 Instance 3 EC2 Instance 4

Main Autoscaling Group

EC2 Instance 5 EC2 Instance 6 EC2 Instance 7 EC2 Instance 8

Environment: devapi1

Elastic Load Balancing

StackSimplifyKalyan Reddy Daida

Managed Updates – Immutable Environment Updates

Auto Scaling group

Main Autoscaling Group

EC2 Instance 5 EC2 Instance 6 EC2 Instance 7 EC2 Instance 8

Environment: devapi1

Elastic Load Balancing

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
Environment
Configuration

StackSimplifyKalyan Reddy Daida

AWS Elastic Beanstalk
Environment

Software (Logs, Env)

Security

Managed Updates

Notifications

Monitoring

Database

Instances

Network

Capacity

Load Balancers

Rolling Updates &
Deployments

S3 Bucket

X-Ray

CloudWatch Elastic Block
Store (EBS)

Elastic Load
Balancing

AWS IAM

AWS Simple
Notification

Service

AWS VPC

AWS RDS

AWS EC2 Auto
Scaling

AWS EC2

Configuration

CloudWatch

AWS EC2

EB
Deployment

Elastic Beanstalk Environment - Configuration

StackSimplifyKalyan Reddy Daida

AWS Elastic Beanstalk

Application#1: User Management Application #2: Product Management

Environments

Dev QA Staging Prod

Environments

Dev QA Staging Prod

Capacity &
Load Balancing

AWS CloudWatch

Instance

Software / Logs

AWS X-Ray

AWS CloudWatch

AWS S3 Bucket

Instances

AWS CloudWatch

Elastic Block Store (EBS)

Instance AMI Auto Scaling

Elastic Load Balancing

Rolling Updates &
Deployments

Security Monitoring Network

Database

Instance AMI

Elastic Load Balancing

Deployment

Managed Updates
Instance

AMI

AWS IAM

Role

AWS CloudWatch

Notifications

AWS Simple
Notification

Service

Amazon VPC

Amazon RDS

AWS CloudFront AWS CloudTrail

AWS Config AWS DynamoDB

AWS ElastiCache AWS Elastic File
System

Additional Integrations

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
Environment
Configuration

Capacity - Autoscaling Groups – Scheduled Actions

StackSimplifyKalyan Reddy Daida

• We can configure our environment with a recurring action to scale up each
day in the morning, and scale down at night when traffic is low.

• In short, we can heavily save costs using these scheduled actions if we use
them in combination with our business knowledge (low traffic times, peak
traffic times) on applications deployed in this environment.

• We can schedule up to 120 scheduled actions per environment
• EB also retains 150 expired scheduled actions which we can reuse by

updating their actions.
• Two types of scheduled actions

• One-Time
• Recurring (uses cron)

Capacity - Scheduled Autoscaling Actions

StackSimplifyKalyan Reddy Daida

• One-Time Action
• Name: IncreaseCapacity
• Min Servers: 7
• Max Servers: 10
• Occurrence: One-Time
• Start Time: UTC

timezone

Capacity - Scheduled Autoscaling Actions

• Recurring Action
• Name: LowTrafficPeriod
• Min Servers: 2
• Max Servers: 3
• Occurrence: Recurring
• Recurrence: 00 20 * * *
• Start Time: Optional
• End Time: Optional

• Recurring Action
• Name: PeakTrafficPeriod
• Min Servers: 4
• Max Servers: 6
• Occurrence: Recurring
• Recurrence: 00 8 * * *
• Start Time: Optional
• End Time: Optional

• Start time for Recurrent Actions
• For recurrent actions, a start time is

optional.
• Specify it to choose when to

activate the action.
• If not specified, the action is

activated immediately, and recurs
according to
the Recurrence expression.

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
Environment
Configuration

Load Balancers

StackSimplifyKalyan Reddy Daida

Application Load Balancer (ALB) Network Load Balancer (NLB)Classic Load Balancer (CLB)

• Supports HTTP, HTTPS
& TCP

• Listeners
• Sessions
• Cross Zone Load

Balancing
• Connection Draining
• Health Check
• All traffic to a listener is

routed to a single port
on the backend
instances (Major
drawback when
compared to ALB)

• Not cost effective

• Supports HTTP & HTTPS
• Listeners
• Processes
• Rules
• Health Check
• Sessions
• Access Log Capture and push

to S3
• Can’t have transport layer

(layer 4) TCP or SSL/TLS
listeners.

• URI Routing: Direct traffic for
certain paths to a different
port on webserver.

• Cost Effective – single load
balancer can be used for
multiple applications listening
on different ports in EC2
Instances.

• Supports TCP only
(layer4)

• Highly performant
• No layer7 HTTP or

HTTPS
• Listeners
• Processes (No Rules)
• Health Check:

Supports active and
passive health
checks.

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
Environment
Configuration

Application Load Balancer (ALB)

StackSimplifyKalyan Reddy Daida

• Load balancer is to distribute traffic among the instances in our
environment.

• URI Routing (Core Feature of ALB): Application Load Balancer inspects
traffic at the application network protocol layer to identify the request's
path (/admin, /user) so that it can direct requests for different paths to
different destinations. CLB lacks this feature.

• Default is to accept requests on Port 80 and distribute them to instances in
our environment.

• We need to understand about 3 things to master ALB from Elastic Beanstalk
perspective

• Listeners
• Processes
• Rules

Application Load Balancer (ALB)

StackSimplifyKalyan Reddy Daida

• Listener
• Each listener routes incoming client traffic on a specified port using a specified

protocol to one or more processes on our instances
• In simple terms, we can call it as a load balancer port where client traffic is routed.
• As soon as ALB created a default listener, a default process and a default rule gets

created which routes incoming HTTP traffic on port 80 to a process named default,
which listens to HTTP port 80.

• Processes
• A process is a target for listeners to route traffic. In simple terms we can call it as a

backend instances port configured on ALB as a process.
• Health Check

• To configure backend instances health check.
• Sessions

• Persistence / Stickiness configuration – It will let us control whether the load balancer routes
requests for the same session to the same EC2 Instance. Primarily deals with the persistence
named cookie persistence

Application Load Balancer (ALB)

StackSimplifyKalyan Reddy Daida

• Rules
• A rule maps requests that the listener receives on a specific path pattern to a

target process.
• Each listener can have multiple rules, routing requests on different paths to

different processes on our instances.
• Rules have numeric priorities that determine the precedence in which they

are applied to incoming requests.
• For each new listener we add, Elastic Beanstalk adds a default rule that

routes all the listener's traffic to the default process
• The default rule's precedence is the lowest; it's applied if no other rule for

the same listener matches the incoming request.

Application Load Balancer (ALB)

StackSimplifyKalyan Reddy Daida

Application Load Balancer

Elastic Beanstalk container

EC2 Instance 1

/app1 – Port80

/app2 – Port81

EC2 Instance 2

/app1 – Port80

/app2 – Port81

0

Port 80

Port 443

Listeners

App1
Port 80

Health Check

App2
Port 81

Health Check

Processes

Application Load Balancer (ALB)

Rules

Name: default
Priority: default

Path: /*

Name: app2
Priority: 1

Path: /app2User

StackSimplifyKalyan Reddy Daida

• Step-1: Select Application Load Balancer when creating environment.
Leave all settings to default

• Step-2: Identify the failures with default root context of application
and fix the health status (/health/status) in default process.

• Step-3: Enable SSL on ALB (SSL terminated on ALB)
• Create SSL certificate using Certificate Manager
• Create Listener with port 443
• Verify the default rule associated with port 443 listener and default process

on port 80
• Apply changes and Test

Application Load Balancer

StackSimplifyKalyan Reddy Daida

• Step-4: Store ALB Access Log files to S3
• Create a S3 bucket
• Associate the ELB policy to s3 bucket
• In EB environment, enable the “Store logs”.
• Test by accessing some API’s and Verify access logs in S3 bucket

Application Load Balancer (ALB)

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
Environment
Configuration

Network Load Balancer (NLB)

StackSimplifyKalyan Reddy Daida

• Network load balancers only serves plain TCP Traffic
• The default listener accepts TCP requests on port 80 and distributes them

to the instances in our environment
• Network Load Balancer supports active health checks. These checks are

based on messages to the root (/) path.
• In addition, Network Load Balancer also supports passive health checks. It

automatically detects faulty backend instances and routes traffic only to
healthy instances.

• Doesn’t support HTTP or HTTPS
• Doesn’t support SSL termination on Load balancer. It can act as a plain TCP

proxy for even SSL connections wherein SSL termination happens at
application level.

Network Load Balancer (NLB)

StackSimplifyKalyan Reddy Daida

Network Load Balancer (NLB)

Elastic Beanstalk container

EC2 Instance 1

App1 – Port80

App2 – Port443

EC2 Instance 2

App1 – Port80

App2 – Port443

Port 80

Port 443

Listeners

App1
Port 80

Health Check

App2
Port 443

Health Check

Processes

Network Load Balancer (ALB)

User

Port 81
Many Listeners to One Process

StackSimplifyKalyan Reddy Daida

• Step-1: Create a new environment with network load balancer
configuration

• Discuss about NLB Listeners and Processes
• Discuss about its ”Many Listeners to One Process” Association

Network Load Balancer - Demo

StackSimplifyKalyan Reddy Daida

• New Environment: When we create the load balanced environment
during environment creation we have the choice to select one load
balancer among the three

• Application Load Balancer
• Network Load Balancer
• Classic Load Balancer

• Converting existing Single Instance Environment: When we convert a
single instance environment to load balanced environment by
changing the configuration in Capacity Section, elastic beanstalk
automatically by default creates the Classic Load Balancer.

Important Point about Load Balancers

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
Environment
Configuration

Rolling Updates & Deployments

StackSimplifyKalyan Reddy Daida

Rolling Updates & Deployments

Elastic Beanstalk
Environment

Application
Deployments

All at Once

Configuration
Updates

Rolling

Rolling with
additional batch

Immutable

Disabled

Rolling based on
Health

Rolling based on
Time

Immutable

Blue / Green
Deployments

StackSimplifyKalyan Reddy Daida

• Step-1: Upload 3 versions of code for effective testing and understanding features.
• Location: EB-Application-Jars/RollingUpdates-Deployments

• eb-appdeployments-h2-v1.jar
• eb-appdeployments-h2-v2.jar
• eb-appdeployments-h2-v3.jar

• Step-2: Create Environment
• Environment Tier: Webserver
• Preconfigured Platform: Java
• Application Code: Existing Version
• Configuration Presets: High Availability
• Rolling Updates & Deployments:

• Application Deployments
• Deployment Policy: Rolling

• Important Note-1 & Tip: During environment creation if “All at Once” selected, Application Deployments section
itself will not be displayed after environment creation. So if we have plans to use Application Deployment policy,
ensure we select one among the three (Rolling, Rolling with Additional batch or Immutable) during environment
creation.

• Important Note-2 & Tip: After environment creation, we can always again switch back to “All at Once” if we
want to and during that time Application Deployments section in Rolling Updates & Deployments will not be
disappeared.

Create Environment – Rolling Deployments Enabled

StackSimplifyKalyan Reddy Daida

Application Deployments – All at once

Auto Scaling group

EC2 Instance 1

E Environment: devapi1

Elastic Load Balancer

Application

EC2 Instance 2

Application

EC2 Instance 3

Application

EC2 Instance 4

Application

• All at Once
• By default, environment uses all-at-

once deployments.
• We will have a Service Disruption

during the deployment
• This is not a recommended option

for application deployments if
Availability of application is a primary
requirement.

User

StackSimplifyKalyan Reddy Daida

Application Deployments – Rolling

Auto Scaling group

EC2 Instance 1

Env: devapi1

Elastic Load Balancer

Application

EC2 Instance 2

Application

EC2 Instance 3

Application

EC2 Instance 4

Application

Batch-1 Batch-2

• Rolling Deployments
• Elastic Beanstalk splits the environment's EC2

instances into batches and deploys the new
version of the application to one batch at a time,
leaving the rest of the instances in the
environment running the old version of the
application.

• During a rolling deployment, some instances serve
requests with the old version of the application,
while instances in completed batches serve other
requests with the new version.

• Flow
• Detach a batch from LB
• Deploy new version
• Re-attach the batch to LB
• Wait for ELB health checks to pass
• Once health check passed start routing requests.
• Proceed with next batch

User

StackSimplifyKalyan Reddy Daida

Application Deployments – Rolling with additional batch

Auto Scaling group

EC2 Instance 1

Env: devapi1
Elastic Load Balancer

Application

EC2 Instance 2

Application

EC2 Instance 3

Application

EC2 Instance 4

Application

Batch-1 Batch-2
EC2 Instance 3

Application

EC2 Instance 4

Application

Batch-3

• Rolling Deployments with additional batch
• To maintain full capacity during

deployments, we can configure our
environment to launch a new batch of
instances before taking any instances out of
service.

• When the deployment completes, Elastic
Beanstalk terminates the additional batch of
instances.

• Flow
• New Batch (batch-3)

• Launches a new batch (batch-3)of instances
• Deploys new version of code during launch
• Registers or attaches to ELB
• Wait for ELB health checks to pass

• Existing Batch (1 or 2)
• Picks another batch (1 or 2)
• Detach a batch-1 from LB
• Deploy new version
• Re-attach the batch-1 to LB
• Wait for ELB health checks to pass

• Left-Over Batch
• Terminate batch-2 instances.

User

StackSimplifyKalyan Reddy Daida

• Step-1: Verify current version of application
• http://<env-dns-url>/hello

• Step-2: Apply Deployment Policy – Rolling with additional batch.
• Step-3: Deploy new version V2 from applications page

• Monitor the Events to understand what's happening
• View Health & EC2 instances page for additional instances coming online
• Access application after deployment

• http://<env-dns-url>/hello

Application Deployments – Rolling with additional batch

StackSimplifyKalyan Reddy Daida

• Rolling Deployments – Basic Flow
• Elastic Beanstalk detaches all instances in batch from load balancer
• Deploys the new application version
• Re-attaches the instances back to load balancer
• Elastic Beanstalk waits till all instances in that batches are healthy before

moving to next batch.
• Major Drawback

• If a deployment fails after one or more batches completed successfully, the
completed batches run new version of application while any pending batches
will run with old version. Ends up with mixed application versions.

• Solution: Manual intervention required to view each instances deployment ID
on health page and terminate those instances with old version so that Elastic
Beanstalk replaces those instances with new version of application.

How Rolling Deployments work?

StackSimplifyKalyan Reddy Daida

• Healthy Threshold
• If our application doesn't pass all health checks, but still operates correctly at a lower health

status, we can allow instances to pass health checks with a lower status, such as Warning, by
modifying the Healthy threshold option.

• Ignore Health Check
• If our deployments fail because they don't pass health checks and we need to force an

update regardless of health status, specify the Ignore health check option.
• Rolling Restarts

• When we specify a batch size for rolling updates, Elastic Beanstalk also uses that value for
rolling application restarts.

• We can use rolling restarts when we need to restart the proxy and application servers running
on our environment's instances without downtime.

• Flow for Rolling Restarts
• Batch #1: Detach from LB, Restart Application, Attache to LB, Wait for health checks to Pass
• Batch #2: Detach from LB, Restart Application, Attache to LB, Wait for health checks to Pass

Application Deployments – Additional Features

StackSimplifyKalyan Reddy Daida

• Immutable Deployments
• Immutable deployments perform an immutable update to launch a full set of

new instances running the new version of the application in a separate Auto
Scaling group, alongside the instances running the old version.

• Immutable deployments can prevent issues caused by partially completed
rolling deployments.

• If the new instances don't pass health checks, Elastic Beanstalk terminates
them, leaving the original instances untouched.

Application Deployments - Immutable

StackSimplifyKalyan Reddy Daida

Application Deployments - Immutable

Auto Scaling group

EC2 Instance 1 EC2 Instance 2 EC2 Instance 3 EC2 Instance 4

Main Autoscaling Group

Auto Scaling group

EC2 Instance 5 EC2 Instance 6 EC2 Instance 7 EC2 Instance 8

Temporary Autoscaling Group

Elastic Load
Balancing

Environment: devapi1

Immutable App Deployment Flow
• Creates Temp Autoscaling group
• Creates one EC2 Instance and deploy
latest version of App in temp ASG
• Attaches that single instance to Load balancer
• Waits for health check to pass
• Provisions remaining instances by
deploying latest version of App
• Attaches them to Load Balancer
• Wait for health check to Pass

StackSimplifyKalyan Reddy Daida

Application Deployments - Immutable

Auto Scaling group

EC2 Instance 1 EC2 Instance 2 EC2 Instance 3 EC2 Instance 4

Main Autoscaling Group

EC2 Instance 5 EC2 Instance 6 EC2 Instance 7 EC2 Instance 8

Environment: devapi1

Elastic Load Balancing

Immutable Application Deployments
• Adds new instances to main ASG
• Removes temp ASG
• Terminates Instances one by one.

StackSimplifyKalyan Reddy Daida

Application Deployments - Immutable

Auto Scaling group

Main Autoscaling Group

EC2 Instance 5 EC2 Instance 6 EC2 Instance 7 EC2 Instance 8

Environment: devapi1

Elastic Load Balancing

StackSimplifyKalyan Reddy Daida

• Step-1: Verify current version of application
• http://<env-dns-url>/hello

• Step-2: Apply Deployment Policy – Immutable.
• Step-3: Deploy new version V3 from applications page

• Monitor the Events to understand what's happening
• View Health & EC2 instances page for additional instances coming online
• Access application after deployment

• http://<env-dns-url>/hello

Application Deployments - Immutable

StackSimplifyKalyan Reddy Daida

• Consider we have an environment named devapi16 running with version eb-app-v1

• If we want to deploy new version, the steps for Blue / Green Deployments include
• Clone devapi16 and create new environment devapi17
• Upload eb-app-v2 version to devapi17
• Once all the tests are passed (health checks, app testing) then SWAP URLs for both environments.

• This is useful for smaller applications whose other aws services integration scope is small.

• Downside
• If our environment has multiple integrations (DynamoDB, RDS DB, Elastic Cache, CICD pipelines and many other integrations)

then cloning just an environment will not do.
• Lot of other things need to be re-created for new environment including DB data to be in sync etc. Lot of permutations and

combinations will come in to play for highly integrated applications, in that case Blue/Green deployments is not an option.
• Creating new environment means its logs, analytics everything will be in new context so ideally not recommended in

production.
• Can be leveraged for multiple dev, qa and staging environments with different versions deployed so that we can SWAP urls

as per need.

Blue / Green Deployments

StackSimplifyKalyan Reddy Daida

Which is the best Application Deployment Option?

Elastic Beanstalk
Environment

Application
Deployments

All at Once

Rolling

Rolling with
additional batch

Immutable

Blue / Green
Deployments

• Service disruption during deployments

• In case of deployment failure, manual intervention
is required

• It ends up as partially completed deployment

• Immutable deployments can prevent issues caused
by partially completed rolling deployments.

• If the new instances don't pass health checks,
Elastic Beanstalk terminates them, leaving the
original instances untouched.

• This is useful for smaller applications whose other
aws services integration scope is small.

StackSimplifyKalyan Reddy Daida

Rolling Updates – Configuration Updates
Elastic Beanstalk

Environment

Configuration
Types

Replaces EC2
Instances

No Impact to
EC2 Instances

• Load Balancer Listener changes
• Load Balancer Health Status URL changes
• Environment Properties addition
• Add Notifications

• Keypair change
• EC2 Instance Type change from t2.micro to

something else
• Apply Managed Updates

StackSimplifyKalyan Reddy Daida

Rolling Updates - Configurations
Elastic Beanstalk

Environment

Configuration Updates
(Rolling Update Type)

Disabled
Rolling based on

Health
Rolling based on

Time Immutable

• Updates
applied all at
once

• Instance
replacement
will be
triggered

• Service
Disruption

• Updates happen in
batches

• Minimum number of
instances will be in
service all times

• Moves to next batch
once the current bacth
health check passes

• Updates happen in
batches

• Minimum number of
instances will be in
service all times

• Moves to next batch
once the Pause Time
reaches

• Same as Immutable
Application
Deployments

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
&

Virtual Private Cloud (VPC)
&

Relational Database Service
(RDS)

StackSimplifyKalyan Reddy Daida

VPC

AWS Cloud

Availability Zone : us-east-2a Availability Zone: us-east-2b

Auto Scaling group

RDS Database Service

Private subnet

Public subnet

Private subnet

RDS MySQL Database

EC2 Instance

NAT Gateway Elastic Load Balancer

10.0.10.0/24

10.0.30.0/24

10.0.50.0/24

Route 53

Private subnet

Public subnet

Private subnet

RDS MySQL Database

EC2 Instance

NAT GatewayElastic Load Balancer

10.0.20.0/24

10.0.40.0/24

10.0.60.0/24

Elastic Beanstalk
Endpoint

Internet
Gateway

User

Public Routes
Destination Target
10.0.0.0/16 local
0.0.0.0/0 IGW

Private Instance 2a Routes
Destination Target
10.0.0.0/16 local
0.0.0.0/0 NAT-2a-GW

Private Instance 2b Routes
Destination Target
10.0.0.0/16 local
0.0.0.0/0 NAT-2b-GW

http://devapi31.stacksimplify.com

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk - Network & Database

Subnet Name Subnet IP Block Availability Zone
public-2a-elb 10.0.10.0/24 us-east-2a
public-2b-elb 10.0.20.0/24 us-east-2b
private-2a-instance 10.0.30.0/24 us-east-2a
private-2b-instance 10.0.40.0/24 us-east-2b
private-2a-database 10.0.50.0/24 us-east-2a
private-2b-database 10.0.60.0/24 us-east-2b

VPC Name CIDR Block
VPC2 10.0.0.0/16

Internet Gateway Name VPC Name to be associated
vpc2-igw VPC2

Route Table Name VPC Name Additional Routes
vpc2-public-routes vpc2 Add Internet Route via vpc2-igw
vpc2-private-2a-routes vpc2 Associate NAT-2a
vpc2-private-2b-routes vpc2 Associate NAT-2b

• Step-1: Create VPC Network
• Create VPC
• Create Subnets
• Create Internet Gateway &

associate to VPC
• Create Route Tables

Public Routes
Destination Target
10.0.0.0/16 local
0.0.0.0/0 IGW

StackSimplifyKalyan Reddy Daida

VPC Design

Documentation Reference: https://aws.amazon.com/answers/networking/aws-single-vpc-design/

https://aws.amazon.com/answers/networking/aws-single-vpc-design/

StackSimplifyKalyan Reddy Daida

• Step-2: Create two NAT
Gateway

• Create two Elastic IPs
• NAT Gateway 1

• Create NAT Gateway in public
Subnet 2a

• Create routes in private route
table 2a to route outbound
traffic via NAT Gateway NAT-2a

• NAT Gateway 2
• Create NAT Gateway in public

Subnet 2b
• Create routes in private route

table 2b to route outbound
traffic via NAT Gateway NAT-2b

Elastic Beanstalk - Network & Database

Route Table Name VPC Name Additional Routes
vpc2-private-2a-routes vpc2 Associate NAT-2a
vpc2-private-2b-route vpc2 Associate NAT-2b

NAT Gateway Name Subnet Elastic IP Allocation
ID

NAT-2a public-2a-elb Select EIP
NAT-2b public-2b-elb Select EIP

Private Instance 2a Routes
Destination Target
10.0.0.0/16 local
0.0.0.0/0 NAT-2a-GW

Private Instance 2b Routes
Destination Target
10.0.0.0/16 local
0.0.0.0/0 NAT-2b-GW

StackSimplifyKalyan Reddy Daida

• Step-3: Understand the Spring Boot Application
• Understand GIT branches

• 01-Unprotected-H2
• 02-Protected-MySQL
• master

• Understand User Management Application Packages
• User Controller
• Admin User Controller
• Application Status Controller
• Hello World Controller
• Authorization Configuration (OAuth)
• pom.xml (jar file name)

• Understand application.properties
• application-h2.properties
• application-mysqlaws.properties
• application.properties

Elastic Beanstalk - Network & Database

This is an Optional Lecture for System Admins but good to learn.

StackSimplifyKalyan Reddy Daida

• Step-4: Build, Package & Upload to Elastic Beanstalk
• Build & Package Spring Boot Application
• Upload the jar file to Elastic Beanstalk Application Versions page.
• You can even directly download the jar file from “EB-Applications-Jars/RDS-

MySQL” folder from course artifacts.

Elastic Beanstalk - Network & Database

StackSimplifyKalyan Reddy Daida

• Step-5: Create Environment
• High Availability

• Select high availability for this environment
• Database Config

• Username: dbadmin1
• Password: dbpassword1

• Network Config
• Select public subnets for ELB
• Select private instance subnets for Instances
• Select private database subnets for databases

• Security Config
• Add Key Pair

• Important Note: If NAT gateway route not configured in private subnets,
elastic beanstalk and ec2 instances communication will not be established
and environment creation will fail.

Elastic Beanstalk - Network & Database

StackSimplifyKalyan Reddy Daida

• Step-6: Update Configuration post environment creation
• 502 Bad Gateway Error

• We get 502 error because application not able to connect to database because it doesn’t
have database information

• Update Database Environment Variables
• Collect Database information from RDS
• Add database environment variables
in Configuration à Software
• Restart Application Server
• Access application & verify logs(if required)

Elastic Beanstalk - Network & Database

Variable Name Variable Value
AWS_RDS_HOSTNAME aa1ecc24l3hfakf.cjskxg02a3pt.

us-east-2.rds.amazonaws.com
AWS_RDS_PORT 3306
AWS_RDS_DB_NAME ebdb
AWS_RDS_USERNAME dbadmin1
AWS_RDS_PASSWORD dbpassword1

StackSimplifyKalyan Reddy Daida

• Update Health Monitor
• Update load balancer health monitor URI (/health/status) and response code 200.

• Environment should be healthy after above two changes

Elastic Beanstalk - Network & Database

StackSimplifyKalyan Reddy Daida

• Step-7: Create Admin User
• Create Admin User in user management application for OAuth Token

generation to access other APIs
• Important Note: Admin User creation API created and unprotected for

convenience but in real world we provision admin user directly to database.
• Test all services

• Step-8: DNS Register the EB Environment URL
• Route53

• Create a registered domain (if not created)
• Go to Hosted Zones
• Create record set
• Test all services with DNS registered url

Elastic Beanstalk - Network & Database

Key Value
Name api.stacksimplify.com
Type A-IPv4 address
Alias Yes
Alias Target Select EB environment URL

StackSimplifyKalyan Reddy Daida

• Option-1: Create RDS database as part of Elastic Beanstalk
environment

• Option-2: Create RDS database separately independent of Elastic
Beanstalk environment.

Elastic Beanstalk & RDS Database - Options

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
&

Relational Database Service
(Externalized)

StackSimplifyKalyan Reddy Daida

Option-1: RDS Database part of Elastic Beanstalk

Environment: EB + RDS

EC2 Instance

Application
Elastic

IP Address

AWS Cloud

EC2 Security group

Application: User Management

Amazon RDS

RDS Security group

3306

User

80

• Cost: cost is going to be high if
we have 1 RDS db per
environment and if we have
multiple environments

• Not recommended for
production environments if we
delete EB environment Database
gets deleted

• Useful for quick creation and
termination environments (temp
environments)

RDS DB part of Elastic Beanstalk

StackSimplifyKalyan Reddy Daida

Option-2: RDS Database external to Elastic
Beanstalk

Environment: EB

EC2 Instance

Application
Elastic

IP Address

AWS Cloud

EC2 Security group

Application: User Management

Amazon RDS

RDS Security group

3306

User

80

RDS DB external to Elastic Beanstalk

• Cost: cost will be reduced as we
created multiple environment
schemas in single RDS database
(Primarily for Dev, QA and
Staging environments).

• Highly recommended for
production environments
because RDS DB in this case acts
as independent database.

• Useful for permanently running
environments by connecting to
externalized database.

StackSimplifyKalyan Reddy Daida

• Cost: cost is going to be high if
we have 1 RDS db per
environment and if we have
multiple environments

• Not recommended for
production environments if we
delete EB environment Database
gets deleted

• Useful for quick creation and
termination environments (temp
environments)

EB & RDS Combination – Pros, Cons
RDS DB part of Elastic Beanstalk RDS DB external to Elastic Beanstalk

• Cost: cost will be reduced as we
created multiple environment
schemas in single RDS database
(Primarily for Dev, QA and
Staging environments).

• Highly recommended for
production environments
because RDS DB in this case acts
as independent database.

• Useful for permanently running
environments by connecting to
externalized database

StackSimplifyKalyan Reddy Daida

• Step-1: Create RDS Database
• Create RDS Database

• Pre-requisite: default VPC should be present in that region where you are creating this database with
below options (below are minimal options with which we can create independent database)

• Database Creation Method: Easy Create
• Configuration: MySQL
• DB Instance Size: Free Tier
• DB Instance Identifier: usermgmtdb1
• Master Username: dbadmin1
• Master Password: dbpassword1

• Step-2: Update Database security group
• Rule: Inbound

• Type: MySQL/Aurora
• Protocol: TCP
• Porta Range: 3306
• Source: My IP
• Description: Access RDS database from local desktop to create “usermgmt” schema

Option-2: Create RDS database separately
independent of Elastic Beanstalk environment.

StackSimplifyKalyan Reddy Daida

• Step-3: Connect to MySQL DB and create schema
• Install mysql workbench on your local desktop
• Connect to database

• Hostname: gather from database connectivity & security tab (Endpoint field)
• Username: dbadmin1
• Password: dbpassword
• In SQL editor execute mysql query “create database dev33usermgmt;”

• Step-4: Create Environment
• Pre-requisite: default VPC should be present in that region where you are creating this

environment (or) custom VPC same as earlier depiction network and database section.
• Environment Name: devapi33
• Environment Tier: Webserver Environment
• Environment Type: Single Instance / Load Balanced
• Platform: Java
• Application Code: Existing Code (eb-usermgmt-mysql-v1)
• Create Environment

Option-2: Create RDS database separately
independent of Elastic Beanstalk environment.

StackSimplifyKalyan Reddy Daida

• Step-5: Update Database security group
• Add new Rule: Inbound

• Type: MySQL/Aurora
• Protocol: TCP
• Porta Range: 3306
• Source: <Elastic Beanstalk environment security group>
• Description: Requests coming from elastic beanstalk environment should be allowed by database

security group to connect to database.

• Step-6: Update Database Info in EB
• Update Database Environment Variables

• Collect Database information from RDS
• Add database environment variables
in Configuration à Software
• Access application & verify logs(if required)

Option-2: Create RDS database separately
independent of Elastic Beanstalk environment.

Variable Name Variable Value
AWS_RDS_HOSTNAME usermgmtdb1.cjskxg02a3pt.us

-east-2.rds.amazonaws.com
AWS_RDS_PORT 3306
AWS_RDS_DB_NAME dev33usermgmt
AWS_RDS_USERNAME dbadmin1
AWS_RDS_PASSWORD dbpassword1

StackSimplifyKalyan Reddy Daida

• Step-7: (Assignment) Create new environment devapi34
• Connect to database and create new schema dev34usermgmt
• Create Environment
• Update Database security group with new environment
• Update Database Environment Variables

• Collect Database information from RDS
• Add database environment variables
in Configuration à Software
• Access application & verify logs(if required)

Option-2: Create RDS database separately
independent of Elastic Beanstalk environment.

Variable Name Variable Value
AWS_RDS_HOSTNAME usermgmtdb1.cjskxg02a3pt.us

-east-2.rds.amazonaws.com
AWS_RDS_PORT 3306
AWS_RDS_DB_NAME dev34usermgmt
AWS_RDS_USERNAME dbadmin1
AWS_RDS_PASSWORD dbpassword1

StackSimplifyKalyan Reddy Daida

Full Stack Application
Deployment

AWS CloudFront

AWS S3 Static Sites

AWS Elastic Beanstalk Spring Boot Restful API

StackSimplifyKalyan Reddy Daida

• Industry wide common and very high demand combination for
building modern applications is Spring Boot & ReactJs

• Backend: SpringBoot – RESTful API’s
• Frontend: ReactJs – Modern UI
• Security: Authentication System – OAuth, JWT

• Learning full stack deployment on cloud providers and their DevOps
usecases implementation will be a very high demand requirement
today.

• In this section we will cover, full stack application deployments and in
next section we will implement DevOps usecases (Continuous
Integration & Continuous Delivery for Full Stack applications where-
in our backend is deployed on Elastic Beanstalk.

Why to learn Full Stack Deployments on AWS?

StackSimplifyKalyan Reddy Daida

• ReactJs is a javascript library for building user interfaces
• Very popular and highly used now a days.
• Refer the below link which contains the important trends about

ReactJs (always on Top)
• https://medium.com/zerotomastery/tech-trends-showdown-react-

vs-angular-vs-vue-61ffaf1d8706
• Google Trends URL:
• Which means in addition to ReactJs developers, there will be a

demand for DevOps resources for managing ReactJs based
applications on cloud platforms in combination with backend
applications like spring boot.

ReactJs

https://medium.com/zerotomastery/tech-trends-showdown-react-vs-angular-vs-vue-61ffaf1d8706
https://trends.google.com/trends/explore?cat=31&q=Vue.js,React,Angular

StackSimplifyKalyan Reddy Daida

VPC

AWS Cloud

Availability Zone : us-east-2a Availability Zone: us-east-2b

Auto Scaling group

RDS Database Service

Private subnet

Public subnet

Private subnet

RDS MySQL Database

EC2 Instance

NAT Gateway Elastic Load Balancer

10.0.10.0/24

10.0.30.0/24

10.0.50.0/24

Route 53

Private subnet

Public subnet

Private subnet

RDS MySQL Database

EC2 Instance

NAT GatewayElastic Load Balancer

10.0.20.0/24

10.0.40.0/24

10.0.60.0/24

Elastic Beanstalk
Endpoint

Internet
Gateway

User http://devapi31.stacksimplify.com
CloudFront

S3 Bucket
Static Site - ReactJs

Route 53

https://fullstackdemo.stacksimplify.com

http://devapi31.stacksimplify.com

Full Stack
Application
Deployment

StackSimplifyKalyan Reddy Daida

• Step-1: ReactJS Application Test locally by pointing to local
environment

• Step-2: ReactJS Application Test locally by pointing to Elastic
Beanstalk Environment – devapi31

• Step-3: Setup Static Site on AWS S3 and upload ReactJs generated
static content from build folder

• Step-4: Create CloudFront Distribution with SSL enabled
• Step-5: Route53 – Create Hosted zone with custom DNS

Full Stack Application Deployment

StackSimplifyKalyan Reddy Daida

• Step-1: ReactJS Application Test locally by pointing to local SpringBoot environment
• Install NodeJs on local desktop.

• brew update
• brew install node.
• node –v
• npm -v

• Copy & Unzip ReactJs application from Course-Artifacts in folder “ReactJS-Frontend-App/ 02-
eb-usermgmt-frontend-reactjs.zip”

• Import project to VS Code Editor
• Install Node Packages (Navigate to project folder and execute below command)

• npm install
• Verify the file .env.development

• REACT_APP_USERMGMT_API_BASE_URL=http://localhost:5000
• Test locally by pointing to local springboot environment

• npm run start.

Full Stack Application Deployment

StackSimplifyKalyan Reddy Daida

• Step-2: ReactJS Application Test locally by pointing to Elastic Beanstalk
Environment

• Understand the file .env.production and update Elastic Beanstalk environment endpoint.
• Important Note: Remove “/” at the end of URL when updating in .env.production.
• npm run build
• npm install –g serve
• serve –s build
• Test ReactJS locally after executing above commands wherein API requests going to

Elastic Beanstalk environment.
• Verify using ReactJs UI (Create new user)
• Verify using Postman ListUsers service pointing to devapi31 environment.

Full Stack Application Deployment

StackSimplifyKalyan Reddy Daida

• S3 stands for – Simple Storage Service
• S3 has a simple web services interface that you can use to store and retrieve

any amount of data, at any time, from anywhere on the web.
• It gives any developer access to the highly scalable, reliable, fast, inexpensive

data storage infrastructure that Amazon uses to run its own global network of
web sites.

• Industry-leading performance, scalability, availability, and durability
• Wide range of cost-effective storage classes
• Unmatched security, compliance, and audit capabilities
• In short, most of AWS services use S3 as their underlying store including

Elastic Beanstalk which we are discussing in this course.
• In upcoming sections, we will be implementing Continuous Integration &

Delivery and you will see how S3 will be used there to store the build artifacts.

AWS S3 Buckets

StackSimplifyKalyan Reddy Daida

• Step-3: Static Site setup on AWS S3 and upload
ReactJs project files

• Create S3 Bucket
• Make the bucket public
• Add the bucket policy
• Enable Static Website Hosting in bucket properties

and make a note of S3 Endpoint
• Upload Static content from “build” folder in ReactJs

project folder.
• Test the application using S3 endpoint noted from

Static Website Hosting section.
• Understand difference between regular S3 bucket

endpoint & S3 endpoint for Static website hosting.

Full Stack Application Deployment

{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "PublicReadGetObject",
"Effect": "Allow",
"Principal": "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::bucket-name/*"

}
]

}

Bucket Policy

StackSimplifyKalyan Reddy Daida

• Speeds up distribution of static and dynamic web content
• CloudFront delivers our content through a worldwide network of data

centers called edge locations.
• When a user requests content that we are serving with CloudFront, the user

is routed to the edge location that provides the lowest latency (time delay),
so that content is delivered with the best possible performance.

• If the content is already in the edge location with the lowest latency,
CloudFront delivers it immediately.

• If the content is not in that edge location, CloudFront retrieves it from an
origin that you've defined—such as an Amazon S3 bucket, or an HTTP
server (for example, a web server) that we have identified as the source for
the definitive version of our content.

AWS CloudFront Introduction

StackSimplifyKalyan Reddy Daida

• Step-4: Create CloudFront Distribution
• Create Distribution of Type Web
• Origin Domain Name: <Very important caution – provide S3 endpoint which is

shown in Static Website hosting section of S3 bucket and not regular s3 endpoint>
• demoapi31static.s3-website.us-east-2.amazonaws.com

• Viewer Protocol Policy: HTTP & HTTPS
• Alternate Domain Names: fullstackdemo.stacksimplify.com
• SSL Certificate: *.stacksimplify.com
• Discuss about other settings
• Rest all settings leave to defaults
• Wait for 10 to 15 minutes for distribution to get created and replicated across all

edge locations.
• Access the application using CloudFront domain name & test.

Full Stack Application Deployment

StackSimplifyKalyan Reddy Daida

• Step-5: Route53 – Create Hosted zone with custom DNS
• Make a note of CloudFront domain name for the distribution we created

recently.
• Create a Hosted Zone in Route53

• Name: fullstackdemo.stacksimplify.com
• Alias: Yes
• Alias Target: <Copy cloudfront distribution domain name>
• Click Create.

• Wait for few minutes to changes to take place. Usually it takes 60 seconds for
Route53 hosted zone propagations but sometimes it might even take 15to 20
minutes to clear DNS caches.

• Access and test both HTTP and HTTPS urls
• HTTP: http://fullstackdemo.stacksimplify.com
• HTTPS: https://fullstackdemo.stacksimplify.com

Full Stack Application Deployment

StackSimplifyKalyan Reddy Daida

Continuous Integration
&

Continuous Delivery

CodeBuildCodeCommit CodePipeline CloudWatch Simple Notification ServiceElastic Beanstalk

StackSimplifyKalyan Reddy Daida

• Deployment to
production
environments

• Monitor codein
production to
quickly detect
errors

Source

• Check-in source
code

• Peer review new
code

• Pull Request
process

Build ProductionTest

• Deployment to
production
environments

• Monitor codein
production to
quickly detect
errors

• Compile Code &
build artifacts (war
,jar, container
images,
Kubernetes
manifest files)

• Unit Tests

• Integration tests
with other
systems.

• Load Testing
• UI Tests
• Security Tests
• Test Environments

(Dev, QA and
Staging)

Stages in Release Process

StackSimplifyKalyan Reddy Daida

Stages in Release Process

Source Build ProductionTest

StackSimplifyKalyan Reddy Daida

Continuous Integration

Source Build ProductionTest

• Automatically kick off a new release when new code is checked-in

• Build and test code in a consistent, repeatableenvironment

• Continually have an artifact ready for deployment

StackSimplifyKalyan Reddy Daida

Continuous Delivery

Source Build ProductionTest

• Automatically deploy new changes to staging environments fortesting

• Deploy to production safely without affectingcustomers
• Deliver to customers faster

• Increase deployment frequency, and reduce change lead time and change failure

rate

StackSimplifyKalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +
Third Party

AWSCodeCommit AWSCodeBuild CodeDeploy AWSX-Ray Amazon
CloudWatch

AWSCodePipeline

Elastic
Beanstalk

StackSimplifyKalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +
Third Party

AWSCodeCommit AWSCodeBuild AWSX-Ray Amazon
CloudWatch

AWSCodePipeline

Elastic
Beanstalk

StackSimplifyKalyan Reddy Daida

Source

AWS Developer Tools or AWS Code Services

Build Test Deploy Monitor

CodeBuild + Third PartyCodeCommit CodeBuild AWSX-Ray CloudWatch

• Fully managed build service, Compiles
source code, Runs tests and produces
software packages

• Scales continuously and processes multiple
builds concurrently.

• No build servers to manage.
• Pay by minute, only for compute resources

we use.
• Monitor builds through CloudWatch events.
• Supports following programming language

runtimes Ruby, Python, PHP, Node, Java,
Golang, .Net Core, Docker and Android

• Automates code deployments
to any instance of EB
environment using EB container
• EB picks the artifacts

generated
by codeBuild and deploys to EB
Environment

• Version control
service
• We can privately
store and manage
source code
• Secure & highly
available

• Monitors Source
check-ins and triggers
builds
• Monitors builds
• Monitors
Infrastructure
• Collects logs

CodePipeline

• Continuous delivery service for fast and reliable
application updates

• Model and visualize your software release process
• Builds, tests, and deploys your code every time there

is a code change
• Integrates with third-party tools and AWS

Elastic Beanstalk

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
Pre-requisites for

CI CD Implementation

StackSimplifyKalyan Reddy Daida

• Step-1: Create 3 environments for CICD implementation
• Dev: leverage devapi31 created as part of Network & Database section (already

exists)
• Staging: Clone devapi31 and make necessary changes
• Production: Clone devapi31 and make necessary changes

• Step-2: Staging environment – stageapi31
• Clone devapi31 with name as stageapi31
• For stageapi31, update RDS DB hostname in EB environment properties and test

• Step-3: Production Environment – prodapi31
• Clone devapi31 with name as prodapi31
• For prodapi31, update RDS DB hostname in EB environment properties and test

Elastic Beanstalk – Environment Creation for CICD

StackSimplify

AWS CodeCommit

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

• Version Control Service hosted by AWS
• We can privately store and manage documents, source code, and

binary files
• Secure & highly scalable
• Supports standard functionality of Git (CodeCommit supports Git

versions 1.7.9 and later.)
• Uses a static user name and password in addition to standard SSH..

AWS CodeCommit - Introduction

StackSimplifyKalyan Reddy Daida

CodeCommit – Integration with AWS Services

AWS CodeCommit

AWS CodeStar AWS CodeBuild AWS CodePipeline AWS Cloud9 AWS Amplify AWS CloudFormation

Amazon CloudWatchAWS CloudTrailAWS Elastic BeanstalkAWS Key Management
Service

Amazon Simple Notification
Service

StackSimplifyKalyan Reddy Daida

• Step-1: Project setup in Spring Tool Suite IDE
• Pre-requisites: Install STS IDE
• Clone the project 01-eb-usermgmt from

https://github.com/stacksimplify/01-eb-usermgmt
• Create local branches (3 branches – 01, 02 and master)
• Delete Remotesà origin
• Run application locally once and test it (simple/ health/status

api)
• Step#2: Remote GIT Repository

• Create a remote git repository in AWS Code Commit.
• Create Code Commit git credentials to connect.
• Push the code to remote git repository.
• Verify code in AWS Code Commit.

• Step#3: CodeCommit Features
• Code, Commits, Branches
• Settings: Notifications, Triggers
• Pull Requests

CodeCommit - Steps

AWS CodeCommit

AWS Cloud

Local Git
Repo

push

Developer

GitHub

Clone

https://github.com/stacksimplify/01-eb-usermgmt

StackSimplify

AWS CodeBuild

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

• CodeBuild is a fully managed build service in the cloud.
• Compiles our source code, runs unit tests, and produces artifacts

that are ready to deploy.
• Eliminates the need to provision, manage, and scale our own build

servers.
• It provides prepackaged build environments for the most popular

programming languages and build tools such as Apache Maven,
Gradle, and many more.

• We can also customize build environments in CodeBuild to use our
own build tools.

• Scales automatically to meet peak build requests.

CodeBuild - Introduction

StackSimplifyKalyan Reddy Daida

How to run CodeBuild? How CodeBuild works?

StackSimplifyKalyan Reddy Daida

AWS CodeBuild

AWS CodeCommit
Amazon Simple Storage

Service (S3) GitHub GitHub Enterprise Bitbucket

Source

Amazon Simple Storage
Service (S3)

Build Artifacts

Amazon EC2 Container
Registry

AWS Managed Image

External Container
Registry (Docker

Hub)

Build Environment

Amazon CloudWatch

Build Logs

AWS CodeBuild Architecture

Amazon Simple Notification
Service

Build Notifications

StackSimplifyKalyan Reddy Daida

• Step#1: Create CodeBuild Project
• Create a S3 bucket and folder
• Create CodeBuild project
• Start build, Verify build logs, Verify build

phase details
• Step#2: buildspec.yml & Start Build

• Create buildspec.yml and check-in code
• Start build, Verify build logs, Verify build

phase details
• Download the artifacts from S3, unzip and

review
• Run one more build and see versioning in S3.

• Step#3: Create Build Notifications
• Create state change notification
• Create Phase change notification

CodeBuild - Steps

AWS Cloud

Local Git
Repo

Developer

push

AWS CodeCommit

AWS CodeBuild Simple Storage
Service (S3)

Commit code changes

StackSimplify

AWS CodePipeline

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

• AWS CodePipeline is a continuous delivery service to model,
visualize, and automate the steps required to release your software.

• Benefits
• We can automate our release processes.
• We can establish a consistent release process.
• We can speed up delivery while improving quality.
• Supports external tools integration for source, build and deploy.
• View progress at a glance
• View pipeline history details.

CodePipeline - Introduction

StackSimplifyKalyan Reddy Daida

AWS CodePipeline

AWS CodeCommit

Amazon EC2 Container
Registry

Simple Storage
Service (S3)

GitHub

AWS CodeBuild

Jenkins

AWS CloudFormation

AWS CodeDeploy

AWS Elastic Beanstalk

AWS Service Catalog

Amazon Elastic Container
Service

Amazon Elastic Container
Service (Blue/Green)

Simple Storage
Service (S3)

Source Build Deploy

Amazon CloudWatch

GitHub Webhooks

Monitor Source Changes

AWS CodePipeline Architecture

StackSimplifyKalyan Reddy Daida

Continuous Delivery

©Amazon

StackSimplifyKalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

Commit code changes

dev

EC2 Instance

Application

Production

EC2 Instance-1

Application

Elastic Beanstalk Environments

EC2 Instance-2

Application

Staging

EC2 Instance-1

Application

EC2 Instance-2

Application

CodeCommit CodeBuild Simple Storage
Service (S3)

Elastic
Beanstalk

CloudWatch

Simple Notification
Service

CodePipeline

CI CD Process

Authorized
ApproverAmazon RDS

StackSimplifyKalyan Reddy Daida

• Step-1: Create Pipeline
• Source: CodeCommit
• Build: CodeBuild
• Artifacts: S3
• Deploy: ElasticBeanstalk – Dev Environment

• Step-2: Make changes to Application & Check-In Code
• Make changes to rest app and check-in
• Pipeline should trigger the build automatically.

CodePipeline - Steps

StackSimplifyKalyan Reddy Daida

• Step-3: Create Staging Deployment Stage in CodePipeline
• Step-4: Create Manual Approval stage in CodePipeline
• Step-5: Create Prod Deployment stage in CodePipeline .
• Step-6: Check-in changed code to trigger pipeline and monitor the

pipeline process.

CodePipeline – Manual Approval & Prod Deployment

StackSimplifyKalyan Reddy Daida

Full Stack Application
CI CD Implementation

AWS CloudFront

AWS S3 Static Sites

AWS Elastic Beanstalk Spring Boot Restful API

StackSimplifyKalyan Reddy Daida

• Step-1: Understand ReactJS manual build process and automate it.
• Install Node Modules: npm install
• Run locally: npm run start
• Production Build steps

• Create production Build: npm run build
• Upload build folder content to S3
• Invalidate Cloud Front cache

• Step-2: Setup local and remote git repository
• Add .gitignore file
• git init
• git add .
• git commit -am “first commit”
• Create repo in github
• git remote add origin <repo-url>
• git push --set-upstream origin master

CI CD – For ReactJS Application

StackSimplifyKalyan Reddy Daida

• Step-3: Understand files listed below
• buildspec.yml (update s3 bucket name)
• .env.development
• .env.production (update with devapi31 url)

• Step-4: Create pipeline
• Source: github
• Build: CodeBuild

• Create two custom IAM policies (for s3 bucket, for CloudFront invalidate)
• Test by updating version value in src/Auth/properties.js

CI CD – For ReactJS Application

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
EB CLI

StackSimplifyKalyan Reddy Daida

• EB CLI is a command line interface for Elastic Beanstalk that provides
interactive commands that simplify creating, updating and
monitoring environments from a local repository.

• We can use the EB CLI as part of our everyday development and
testing cycle as an alternative to the AWS Management Console.

• We need to use EB CLI 3.0 or higher. We are using EB CLI 3.14.6 in
this course. Older versions has different set of commands so its good
to use the latest.

EB CLI

StackSimplifyKalyan Reddy Daida

• eb init
• eb status
• eb events
• eb health
• eb open
• eb list
• eb list –all
• eb terminate
• eb abort

EB CLI Commands

• eb clone
• eb swap
• eb appversion
• eb logs
• eb scale
• eb deploy
• eb deploy –staged
• eb codesource

codecommit

StackSimplifyKalyan Reddy Daida

• Step-1: Install EB CLI
• Step-2: Setup Development Environment in STS IDE
• Step-3: EB CLI Pre-requisites for a development projects
• Step-4: Create EB Application and EB environment
• Step-5: EB CLI Commands
• Step-6: Deploy updates to application
• Step-7: Create new environment (qa)
• Step-8: EB CLI & CodeCommit Integration
• Step-9: Configure CodeCommit Interactively
• Step-10: Advanced environment Customizations with .ebextensions

EB CLI Steps

StackSimplifyKalyan Reddy Daida

• Step-1: Install EB CLI
• Option-1: Using brew

• brew install zlib openssl readline
• brew install aws-elasticbeanstalk
• brew list aws-elasticbeanstalk
• eb --version
• Reference: https://formulae.brew.sh/formula/aws-elasticbeanstalk

• Option-2: Using EB CLI Installer
• brew install zlib openssl readline
• git clone https://github.com/aws/aws-elastic-beanstalk-cli-setup.git
• ./aws-elastic-beanstalk-cli-setup/scripts/bundled_installer
• eb --version
• Reference: https://github.com/aws/aws-elastic-beanstalk-cli-setup

• Option-3: Manually Install EB CLI
• Refer below link for detailed instructions
• Reference: https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3-install-

advanced.html

EB CLI - Steps

StackSimplifyKalyan Reddy Daida

• Step-02: Setup Development Environment
• Create a folder ”ebcli-apps” and copy project located in course uploads “AWS-

ElasticBeanstalk-Masterclass-Course-Artifacts/EB-CLI/03-ebcli-h2.zip”
• Unzip and import the project to STS IDE
• Run the Application and access sample hello world API.

EB CLI - Steps

StackSimplifyKalyan Reddy Daida

• Step-3: EB CLI Pre-requisites for a development projects
• Create CodeBuild Role

• CodeCommit – Full Access
• S3 – Full Access
• CloudWatch – Full Access
• Elastic Beanstalk – Full Access

• Update buildspec.yml
• Artifacts
• CodeBuild Settings

EB CLI - Steps

StackSimplifyKalyan Reddy Daida

• Step-4: Create Application and environment
• Create Application: eb init
• Create Environment: eb create

• Watch codebuild logs in parallel
• Note: Temporary codebuild projects gets created, generates artifacts, stores in S3 and

will get deleted after that.
• Watch the newly created environment in AWS management console.

EB CLI - Steps

StackSimplifyKalyan Reddy Daida

• Step-5: EB CLI Commands
• eb status: Provides information about the status of the environment.
• eb health: Returns the most recent health for the environment.
• eb events: Returns the most recent events for the environment.
• eb open: Opens the public URL of your website in the default browser.
• eb list: Lists all environments in the current application
• eb list –all: Lists all environments in all applications
• eb terminate: Terminates the running environment
• eb abort: Cancels an upgrade when environment configuration changes to instances are

still in progress
• eb clone: Clones an environment to a new environment so that both have identical

environment settings.
• eb swap: Swaps the environment's CNAME with the CNAME of another environment
• eb appversion: Manages your Elastic Beanstalk application versions, including deleting a

version of the application or creating the application version lifecycle policy

EB CLI Steps

StackSimplifyKalyan Reddy Daida

• Step-5: EB CLI Commands
• eb logs: This command has two distinct purposes: to enable or disable log

streaming to CloudWatch Logs, and to retrieve instance logs or CloudWatch
Logs.

• eb logs –instance <instance-id>
• eb logs –all –zip or --stream
• eb logs -cloudwatch-logs

• eb logs –cw
• https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-logs.html

EB CLI Steps

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-logs.html

StackSimplifyKalyan Reddy Daida

• Step-6: Deploy updates to application
• Access hello world service before updates
• Update the hello world service
• Verify app version - eb appversion
• eb deploy: Deploys the application source bundle from the initialized project

directory to the running application
• Verify hello world service – latest changes should reflect
• eb status
• eb scale: Scales the environment to always run on a specified number of

instances, setting both the minimum and maximum number of instances to
the specified number.

• eb scale number-of-instances
• eb scale number-of-instances environment-name

EB CLI Steps

StackSimplifyKalyan Reddy Daida

• Step-7: Create new environment (qa)
• Eb create <environment name>: Not recommended, it creates the

environment with classic load balancer (CLB)
• eb create: Select interactive options after executing eb create so we have an

option to choose the load balancer. Always recommended to choose
Application Load Balancer (ALB) if we have an option to choose CLB or ALB.

• eb use: Sets the specified environment as the default environment.

EB CLI Steps

StackSimplifyKalyan Reddy Daida

• Step-8: EB CLI & CodeCommit Integration
• We can use the EB CLI to deploy our applications directly from our AWS

CodeCommit repository.
• With CodeCommit, we can upload only our changes to the repository when

we deploy, instead of uploading our entire project during every change or
release.

• EB CLI pushes our local commits and uses them to create application versions
when we use eb create or eb deploy.

• Some regions don't offer CodeCommit. The integration between Elastic
Beanstalk and CodeCommit doesn't work in these regions.

EB CLI Steps

StackSimplifyKalyan Reddy Daida

• Step-8: EB CLI & CodeCommit Integration
• Git commands for creating local git repository

• git init
• git add .
• git commit –am “V1-FirstCommit-CCIntegration”

• Creating codecommit repository using eb cli
• eb init

• Deploying from codecommit repository
• eb deploy

• Pushes new local commits to code commit repository
• CodeBuild uses HEAD revision of branch to create the archive
• Deploys to EB environment.

• eb deploy --staged
• As we develop or debug, we might not want to push changes that we haven't confirmed are working.
• We can avoid committing our changes by staging them and using eb deploy --staged (which performs

a standard deployment).

EB CLI Steps

StackSimplifyKalyan Reddy Daida

• Step-9: Configure CodeCommit Interactively
• eb codesource codecommit
• To disable CodeCommit integration

• eb codesource local

EB CLI steps

StackSimplifyKalyan Reddy Daida

• Step-10: Advanced environment Customizations with .ebextensions
• We can add Elastic Beanstalk configuration files (.ebextensions) to our web application's

source code to configure our environment and customize the AWS resources that it
contains

• Supports YAML or JSON formatted documents with .config file extension.
• Files need to be placed in .ebextensions folder
• I recommend using YAML which is more flexible and readable than JSON.
• Always test new .config files in test environments else if something wrong in these files

might create problems for entire environment.
• Additional References

• https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html
• https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-options-general.html#command-

options-general-elbhealthcheck
• https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions-optionsettings.html
• https://docs.aws.amazon.com/codecommit/latest/userguide/troubleshooting-ch.html#troubleshooting-

macoshttps
• https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/java-se-procfile.html
• https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-options.html

EB CLI Steps

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-options-general.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/ebextensions-optionsettings.html
https://docs.aws.amazon.com/codecommit/latest/userguide/troubleshooting-ch.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/java-se-procfile.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-options.html

StackSimplifyKalyan Reddy Daida

• Procfile
• If we have more than one JAR file in the root of our application source

bundle, we must include a Procfile file that tells Elastic Beanstalk which JAR(s)
to run.

• We can also include a Procfile file for a single JAR application to configure the
Java virtual machine (JVM) that runs our application.

• We must save the Procfile in our source bundle root.
• The file name is case sensitive.

EB CLI Steps

StackSimplifyKalyan Reddy Daida

• Option Settings
• We can use

the option_settings key
to modify the Elastic
Beanstalk configuration
and define variables
that can be retrieved
from our application
using environment
variables.

• Some namespaces
allow us to extend the
number of parameters,
and specify the
parameter names.

EB CLI Steps

StackSimplifyKalyan Reddy Daida

• Step-10: Advanced environment Customizations with .ebextensions
• Create Procfile & .ebextensions folder in our application root folder
• Create healthcheckurl.config

EB CLI Steps

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk

StackSimplifyKalyan Reddy Daida

• Packer is an open source tool for creating identical machine images for
multiple platforms from a single source configuration.

• Packer is lightweight, runs on every major operating system, and is highly
performant, creating machine images for multiple platforms in parallel.

• Packer does not replace configuration management tools like Chef or
Puppet.

• In fact, when building images, Packer is able to use tools like Chef or Puppet
to install software onto the image.

• A machine image is a single static unit that contains a pre-configured
operating system and installed software which is used to quickly create new
running machines.

• Machine image formats change for each platform. Some examples
include AMIs for EC2, VMDK/VMX files for VMware, OVF exports for
VirtualBox, etc.

What is Packer?

StackSimplifyKalyan Reddy Daida

• We will be using Packer to create EC2 AMI’s that can be used by
Elastic Beanstalk for creating custom platforms.

Why Packer for Elastic Beanstalk?

StackSimplifyKalyan Reddy Daida

• Step-1: Install Packer
• brew install packer
• Verify installation

• packer version
• packer

• Reference: https://www.packer.io/intro/getting-started/install.html

• Step-2: Packer Template Fundamentals
• Variables
• Builders
• Provisioners
• Communicators

Packer - Steps

StackSimplifyKalyan Reddy Daida

• User Variables
• User variables allow our templates

to be further configured with
variables from the command-line,
environment variables, Vault, or
files.

• This lets us parameterize our
templates so that we can keep
secret tokens, environment-specific
data, and other types of
information out of our templates.

• This maximizes the portability of the
template.

Packer - Steps

StackSimplifyKalyan Reddy Daida

• Builders
• Builders are responsible for creating machines and

generating images from them for various platforms.
• For example, there are separate builders for EC2, VMware,

VirtualBox, etc.
• Packer comes with many builders by default, and can also

be extended to add new builders.
• Every build is associated with a single communicator.

• Communicators
• Communicators are used to establish a connection for

provisioning a remote machine (such as an AWS instance).
• Communicators are the mechanism Packer uses to upload

files, execute scripts, etc. with the machine being created.
• Reference

• https://www.packer.io/docs/builders/amazon.html

Packer - Steps

https://www.packer.io/docs/builders/amazon.html

StackSimplifyKalyan Reddy Daida

• Provisioners
• Provisioners section contains an array

of all the provisioners that Packer
should use to install and configure
software within running machines
prior to turning them into machine
images.

• In simple terms, install desired
software on machine before turning
them as images.

• Provisioners are optional.
• If no provisioners are defined within a

template, then no software other than
the defaults will be installed within the
resulting machine images.

• A provisioner definition is a JSON
object that must contain at least
the type key. This key specifies the
name of the provisioner to use.

Packer - Steps

StackSimplifyKalyan Reddy Daida

• Step-3: Understand packer project
• Download packer project from course-uploads

• AWS-ElasticBeanstalk-Masterclass-Course-Artifacts/EB-CustomPlatforms/packer1.zip
• Review and understand below two files

• ami.json
• setup.sh

• Step-4: Execute packer commands to create EC2 AMI
• packer build <template file>
• packer build ami.json
• Understand the output from packer build command.
• Navigate to AWS management console EC2 à Instances, verify packer-builder-

docker vm got created.
• Navigate to AWS management console Images à AMIs, verify docker ami getting

created.

Packer - Steps

StackSimplifyKalyan Reddy Daida

• Step-5: Create EC2 Instance from new AMI created.
• Create EC2 Instance from new AMI created
• Login to VM and verify the packages.

• rpm -qa | grep docker
• docker images
• docker run hello-world
• docker images

Packer - Steps

StackSimplifyKalyan Reddy Daida

Elastic Beanstalk
Custom Platforms

StackSimplifyKalyan Reddy Daida

• A custom platform is a more advanced customization than a custom
image in several ways.

• A custom platform lets us develop an entire new platform from
scratch, customizing the operating system, additional software, and
scripts that Elastic Beanstalk runs on platform instances.

• This flexibility enables us to build a platform for an application that
uses a language or other infrastructure software, for which Elastic
Beanstalk doesn't provide a managed platform.

• In addition, with custom platforms we use an automated, scripted
way to create and maintain our customization, whereas with custom
images we make the changes manually over a running instance.

Elastic Beanstalk - Custom Platforms

StackSimplifyKalyan Reddy Daida

• To create a custom platform, we build an AMI from one of the
supported operating systems—Ubuntu, RHEL, or Amazon Linux.

• We create our own Elastic Beanstalk platform using Packer, which is
an open-source tool for creating machine images for many platforms,
including AMIs for use with Amazon Elastic Compute Cloud (Amazon
EC2).

• An Elastic Beanstalk platform comprises an
• AMI configured to run a set of software that supports an application
• metadata that can include custom configuration options and default

configuration option settings.

Elastic Beanstalk - Custom Platforms

StackSimplifyKalyan Reddy Daida

• Elastic Beanstalk manages Packer as a separate built-in platform, and we
don't need to worry about Packer configuration and versions.

• We create a platform by providing Elastic Beanstalk with a Packer template,
and the scripts and files that the template invokes to build an AMI.

• These components are packaged with a platform definition file, which
specifies the template and metadata, into a ZIP archive, known as
a platform definition archive.

• When we create a custom platform, we launch a single instance
environment without an Elastic IP that runs Packer.

• Packer then launches another instance to build an image. We can reuse this
environment for multiple platforms and multiple versions of each platform.

Elastic Beanstalk - Custom Platforms

StackSimplifyKalyan Reddy Daida

• Custom platforms are AWS Region specific. If we use Elastic
Beanstalk in multiple Regions, we must create our platforms
separately in each Region.

Elastic Beanstalk - Custom Platforms

StackSimplifyKalyan Reddy Daida

• Step-1: Download and Unzip from course artifacts
• Create folder EB-CustomPlatforms
• Download custom platform project from course-uploads

• AWS-ElasticBeanstalk-Masterclass-Course-Artifacts/EB-CustomPlatforms/custom_platform.zip
• Unzip the project in EB-CustomPlatforms folder

• Step-2: Understand the following on a high level
• Packer Template: tomcat_platform.json.
• Custom Platform file: platform.yml
• builder.sh, CONFIG
• Folder: setup-scripts
• Folder: platform-uploads
• References:

• https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/custom-platforms.html
• https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/platform-yaml-format.html

Elastic Beanstalk - Custom Platforms Steps

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/custom-platforms.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/platform-yaml-format.html

StackSimplifyKalyan Reddy Daida

• Step-3: Create Custom Platform
• Initialize a platform repository

• eb platform init
• Create Platform – Builds a new version of platform (custom-tomcat)

• eb platform create
• Verify Status

• eb platform status
• Verify platform logs

• eb platform logs
• Verify platform events

• eb platform events
• List the version of current platform

• eb platform list

• EB Platform Command Reference:
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-platform.html

Elastic Beanstalk - Custom Platforms Steps

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb3-platform.html

StackSimplifyKalyan Reddy Daida

• Step-4: Create Elastic Beanstalk environment using newly created custom
platform

• Create EB Environment
• Create Application: EB-Custom-Platform-Demo
• Application Versions Page: Upload demo.war file to Application Versions page.
• Create EB Environment: demoapp1
• Select Custom Platform: custom-tomcat

Step-5: Publish new version of Custom Platform
• Update platform.yml with new environment Variable
• Create new version of platform

• eb platform create
• Important Note: Refresh EB environments page on AWS management console.
• Apply new platform changes to demoapp1 environment.

Elastic Beanstalk - Custom Platforms Steps

StackSimplifyKalyan Reddy Daida

• Step-6: Clean up resources
• Terminate demoapp1 environment
• Clean-up custom platform resources from AWS EB.

• eb platform list
• List the version of the current platform.

• eb platform delete
• Delete a platform version. The version isn't deleted if an environment is using that version.

• Verify EC2 à AMIs
• Verify EB à Custom Platforms drop down.
• Terminate EB Environment named Custom Platform Builder

Elastic Beanstalk - Custom Platforms Steps

StackSimplifyKalyan Reddy Daida

Thank You

