
StackSimplify

AWS EKS Kubernetes - Masterclass | DevOps, Microservices

Kalyan Reddy Daida

StackSimplify© Kalyan Reddy Daida

AWS EKS

Course Outline

StackSimplify© Kalyan Reddy Daida

STACKSIMPLIFY

Kubernetes for Beginners On Cloud

AWS EKS Kubernetes - Masterclass |
DevOps, Microservices

Azure AKS Kubernetes - Masterclass |
DevOps, Microservices

Google GKE Kubernetes - Masterclass |
DevOps, Microservices

Kubernetes
On

Cloud
Roadmap Docker & Kubernetes for Java Spring Boot

Developers on AWS

Master HELM3 with Kubernetes on AWS &
Azure

StackSimplify© Kalyan Reddy Daida

Kubernetes Concepts
AWS Services

Integration with EKS

MicroservicesDevOps

StackSimplify© Kalyan Reddy Daida

Architecture

Pods

ReplicaSets

Deployments

Node Port Service

Cluster IP Service

External Name
Service

Ingress Service

Ingress SSL

Ingress & External
DNS

kubectl - Imperative

Declarative with
YAML

Secrets

Init Containers

Probes

Requests & Limits

Namespaces

Limit Range

Resource Quota

Storage Classes

Persistent Volumes

PVC

Load Balancers

Annotations

Canary
Deployments

HPA

VPA

DaemonSets

Fluentd for logs

ConfigMaps

K
U
B
E
R
N
E
T
E
S

A
W
S

S
E
R
V
I
C
E
S

MicroservicesDevOps

AWS Developer Tools Service Discovery

Distributed Tracing

Canary DeploymentsAWS CodeBuildAWS
CodeCommit

AWS CodePipeline

StackSimplifyKalyan Reddy Daida

Docker Host

Images Containers

nginxdemos
/hello

Container-11

Docker - Fundamentals

Docker Daemon
nginxdemos

/hello

Docker Registry
(Docker Hub)

Docker Client (My Desktop or Docker Host)

docker pull nginxdemos/hello

docker run -p 82:80 -d nginxdemos/hello
• Docker Registry or Docker Hub

• A Docker registry stores Docker images.
• Docker Hub is a public registry that anyone can use, and Docker is

configured to look for images on Docker Hub by default.
• We can even run our own private registry.
• When we use the docker pull or docker run commands, the

required images are pulled from our configured registry.
• When we use the docker push command, our image is pushed to

our configured registry.

StackSimplify© Kalyan Reddy Daida

Kubernetes - Imperative & Declarative

Pod

ReplicaSet

Deployment

Service

YAML & kubectl

Pod

ReplicaSet

Deployment

Service

kubectl

Kubernetes Fundamentals

Imperative Declarative

StackSimplify© Kalyan Reddy Daida

POD

REST
API

ReplicaSet

Deployment (UserMgmt)

UserMgmt – NodePort Service

POD

ReplicaSet
Deployment (mysql)

MySQL – ClusterIP Service

MySql

EKS Cluster

Environment Variables

Volumes

Volume Mounts

ClusterIP Service

Storage Class

Persistent Volume Claim

Config Map

Deployment

NodePort Service

Deployment

Environment Variables

AWS Elastic Block Store - EBS

EKS Storage
EBS CSI Driver

Users

http://<workernode-public-ip>:<NodePort>/usermgmt/<apis>

StatefulSetsComplex setup to achieve HA

Complex Multi-Az support for EBS

Complex Master-Master MySQL setup

Complex Master-Slave MySQL setup

No Automatic Backup & Recovery

Drawbacks of EBS CSI for MySQL DB

No Auto-Upgrade MySQL

StackSimplify© Kalyan Reddy Daida

POD

REST
API

ReplicaSet

Deployment (UserMgmt)

UserMgmt – NodePort Service

MySQL – ExternalName Service

EKS Cluster

ExternalName Service

NoePort Service

Deployment

Environment Variables
AWS

RDS Database

Users

http://<workernode-public-ip>:<NodePort>/usermgmt/<apis>

Amazon RDS

High Availability

Backup & Recovery

Read Replicas

Metrics & Monitoring

Automatic Upgrades

Multi-AZ Support

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

EC2 Worker Node-1

Public subnet

EC2 Worker Node-2

Deployment

ReplicaSetU

Pod

U

Pod

U

Pod

U

Pod

User Management – Node Port Service

MySQL – External Name Service

Private subnet Private subnet

Amazon RDS Amazon RDS

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

&
RDS Database

http://<workernode-public-ip>:<NodePort>/usermgmt/<apis>

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Classic Load Balancer Service

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Classic Load Balancer

Classic Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

Deployment

ReplicaSetU

Pod

U

Pod

U

Pod

U

Pod

Classic CLB DNS URL

EKS Private NodeGroup

NAT gateway NAT gateway

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Network Load Balancer Service

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Network Load Balancer

Network Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

Deployment

ReplicaSetU

Pod

U

Pod

U

Pod

U

Pod

NLB DNS URL

EKS Private NodeGroup

NAT gateway NAT gateway

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Application Load Balancer Service (Ingress)

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Application

Load Balancer & Route53
Ingress & External-DNS

Application Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

EKS Private NodeGroup

NAT gateway NAT gateway

Deployment: UMS
ReplicaSet

U

Pod

/*Ingress

HTTP → HTTPS

User Management – Node Port Service

/app2/*/app1/*

Deployment: app1
ReplicaSet

N

Pod

Deployment: app2
ReplicaSet

N

Pod

app1- NodePort SVC app2 -NodePort SVC

SSL

AWS Certificate Manager

Amazon Route 53

HTTPS URLS
https://apps.kubeoncloud.com/usermgmt/users

SSL Redirect

apps.kubeoncloud.com

external-dns

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Managed Node Groups EKS Fargate Profiles

Auto Scaling group
EC2 Instance EC 2Instance

EKS Public Managed Node Group

Auto Scaling group
EC2 Instance EC 2Instance

EKS Private Managed Node Group

EKS Cluster

EKS Deployment Options - Mixed

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

Fargate Profile
Fargate EC2 Instance Fargate EC2 Instance

EKS Fargate

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Managed Node Groups EKS Fargate Profiles

EKS Cluster

Availability Zone: us-east-1a

Private subnet

Availability Zone: us-east-1b

Private subnet

EKS Fargate

Fargate Profile: App2
N

App2 Pod

N

App2 Pod

Fargate Profile: UMS
U

UMS Pod

U

UMS Pod

Auto Scaling group

EKS Private Managed Node Group

N

App1 Pod

N

App1 Pod

App1 - NodePort Service

Ingress

AWS Certificate Manager

Amazon Route 53

Users

App1 - Ingress

App2 - Ingress

UMS - Ingress

Amazon RDS DB

App2 - NodePort Service

UMS - NodePort Service

MySQL – ExternalName Service

NS: ns-app1
NS: ns-app2

NS: ns-ums

app1. kubeoncloud.com
app2.kubeoncloud.com
ums.kubeoncloud,comapp1.kubeoncloud.com app2.kubeoncloud.com ums.kubeoncloud.com

EKS Deployment Options – Mixed Mode - 3 Apps

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Private Managed Node Group

EKS Cluster

Ingress

AWS Certificate Manager
Amazon Route 53

Users

ECR Demo - ALB Ingress Service

ecrdemo.kubeoncloud.com

http://ecrdemo.kubeoncloud.com

EKS & ECR

EC2 Worker Node-1 EC2 Worker Node-2

N

Pod

N

Pod

ECR Demo App - NodePort Service

Elastic Container Registry - ECR

Docker Image

Developer

Push Images

Pull Docker Image from ECR

NAT gatewayNAT gateway

StackSimplifyKalyan Reddy Daida

Stages in Release Process

Source Build ProductionTest

StackSimplifyKalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +

Third Party

AWSCodeCommit AWSCodeBuild AWS CloudWatch

Container Insights

AWSCodePipeline

CodeBuild kubectl

StackSimplifyKalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +

Third Party

AWSCodeCommit AWSCodeBuild

AWSCodePipeline

AWS CloudWatch

Container Insights

CodeBuild kubectl

StackSimplifyKalyan Reddy Daida

Microservices

Create User API

List Users API

Delete User API

Health Status API

User Management Microservice

Send Notification
API

Health Status API

Notification Microservice

End User

Email

Postman
Client

API Developer
Or

API User
Users DB

SMTP
Server

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

EKS Cluster

Amazon Route 53

Users

ums.kubeoncloud.com
services.kubeoncloud.com

Microservices Deployment on AWS EKS

Public subnet

Availability Zone: us-east-1a

Private subnet

Simple Email
Service (SES)

End User

Email

Amazon RDS DBAmazon RDS DB

AWS Certificate
Manager

EKS Managed Node Groups

EC2 Worker Node-1

NAT gateway

EC2 Worker Node-2

Notification – ClusterIP Service

Notification Microservice Deployment
N

NS Pod

SMTP – External Name Service

UMS – NodePort Service

Usermgmt Microservice Deployment
U

UMS Pod

U

UMS Pod

MySQL – External Name Service

NAT gateway

N

NS Pod

UMS – Ingress Service

Ingress
Application Load Balancer

https://ums.kubeoncloud.com/usermgmt/user

StackSimplify© Kalyan Reddy Daida

Kubernetes – DaemonSets

Worker Node - 1
Kubernetes Cluster

Worker Node - 2

XRay pod

X DaemonSet

XRay ClusterIP Service

XRay pod

X

UMS POD

U ReplicaSet

UMS Deployment

UMS POD

U

UMS POD

U

UMS POD

U

UMS LoadBalancer Service

AWS X-Ray

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

EKS Cluster

Amazon Route 53

Users

xraydemo.kubeoncloud.com
services-xray.kubeoncloud.com

Microservices Distributed Tracing with AWS X-Ray

Simple Email
Service (SES)

End User

Email

Amazon RDS DB

AWS Certificate
Manager

EKS Managed Node Groups

EC2 Worker Node-1

NAT gateway

Notification – ClusterIP Service

N

NS Pod

SMTP – External Name Service

UMS – NodePort Service

U

UMS Pod

MySQL – External Name Service

UMS – Ingress Service

Ingress Application Load Balancer

https:// xraydemo.kubeoncloud.com/usermgmt/notification-xray

AWS X-Ray

X

X-Ray Pod

X-Ray – ClusterIP Service

UMS Deployment

NS Deployment

XRay DaemonSet

StackSimplify© Kalyan Reddy Daida

AWS X-Ray – Service Map

StackSimplify© Kalyan Reddy Daida

AWS X-Ray - Traces

StackSimplify© Kalyan Reddy Daida

Microservices – Canary Deployments

StackSimplify© Kalyan Reddy Daida

How HPA works?

Pod - 1 Pod - 2 Pod - N

Scale

Deployment

ReplicaSet

Replication Controller

StatefulSet

Application

Horizontal Pod Autoscaler

. . .

1. Query for Metrics

2. Calculate the Replica’s

3. Scale the app to desired replicas

Metrics Server

Kubernetes Cluster

15 secs

This control loop is executed every 15 seconds

StackSimplify© Kalyan Reddy Daida

Container
Insights

Worker Node - 1
Kubernetes Cluster

Worker Node - 2

Fluentd pod

F Fluentd
DaemonSet

Fluentd pod

F

CW pod

C CloudWatch Agent
DaemonSet

CW pod

C

App Pod

N

NGINX Deployment

App pod

N
ReplicaSet

CloudWatch

Load Balancer Service

Developer or Operations User

Container Map

Container Resources

Performance Dashboards

Log Groups

Log Insights

Alarms

StackSimplify© Kalyan Reddy Daida

CloudWatch Container Insights Map

StackSimplify© Kalyan Reddy Daida

AWS EKS

CLIs

StackSimplify© Kalyan Reddy Daida

AWS EKS Cluster - CLIs

CLIs

AWS CLI

kubectl

eksctl

We can control multiple AWS services from the command line
and automate them through scripts.

We can control Kubernetes clusters and objects using kubectl

1. eksctl is used for creating & deleting clusters on AWS EKS.
2. We can even create, autoscale and delete node groups.
3. We can even create fargate profiles using eksctl
4. In short, it is VERY VERY POWERFUL tool for managing EKS

clusters on AWS.

StackSimplify© Kalyan Reddy Daida

AWS EKS

Cluster

StackSimplify© Kalyan Reddy Daida

AWS EKS – Core Objects

EKS Cluster

EKS Control Plane
Worker Nodes &

Node Groups
Fargate Profiles

(Serverless)
VPC

Contains Kubernetes
Master components
like etcd, kube-
apiserver, kube-
controller.
It’s a managed
service by AWS

Group of EC2
Instances where we
run our Application
workloads

Instead of EC2
Instances, we run
our Application
workloads on
Serverless Fargate
profiles

With AWS VPC we
follow secure
networking
standards which will
allow us to run
production
workloads on EKS.

StackSimplify© Kalyan Reddy Daida

How does EKS work?

© Amazon

StackSimplify© Kalyan Reddy Daida

EKS Control
Plane

1. EKS runs a single tenant Kubernetes control plane for each cluster, and control plane infrastructure
is not shared across clusters or AWS accounts.

2. This control plane consists of at least two API server nodes and three etcd nodes that run across
three Availability Zones within a Region

3. EKS automatically detects and replaces unhealthy control plane instances, restarting them across
the Availability Zones within the Region as needed.

Worker Nodes
&

Node Groups

1. Worker machines in Kubernetes are called nodes. These are EC2 Instances
2. EKS worker nodes run in our AWS account and connect to our cluster's control plane via the cluster

API server endpoint.
3. A node group is one or more EC2 instances that are deployed in an EC2 Autoscaling group.
4. All instances in a node group must

1. Be the same instance type
2. Be running the same AMI
3. Use the same EKS worker node IAM role

EKS Cluster – Core Objects Detailed

StackSimplify© Kalyan Reddy Daida

Fargate Profiles

1. AWS Fargate is a technology that provides on-demand, right-sized compute capacity for containers
2. With Fargate, we no longer have to provision, configure, or scale groups of virtual machines to run

containers.
3. Each pod running on Fargate has its own isolation boundary and does not share the underlying

kernel, CPU resources, memory resources, or elastic network interface with another pod.
4. AWS specially built Fargate controllers that recognizes the pods belonging to fargate and schedules

them on Fargate profiles.
5. We will see more in our Fargate learning section.

VPC

1. EKS uses AWS VPC network policies to restrict traffic between control plane components to within a
single cluster.

2. Control plane components for a EKS cluster cannot view or receive communication from other
clusters or other AWS accounts, except as authorized with Kubernetes RBAC policies.

3. This secure and highly-available configuration makes EKS reliable and recommended for production
workloads.

EKS Cluster – Core Objects Detailed

StackSimplify© Kalyan Reddy Daida

Kubernetes

Architecture

StackSimplify© Kalyan Reddy Daida

Kubernetes

Architecture

StackSimplify© Kalyan Reddy Daida

Kubernetes - Architecture

Kube
Controller
Manager

Cloud
Controller
Manager

kube-apiserver

kube-
scheduler

etcd

Container Runtime (Docker)

Master

Kube-Proxy

Worker Node

Kubelet

Container Runtime (Docker)

Kube-Proxy

Worker Node

Kubelet

Container Runtime (Docker)

StackSimplify© Kalyan Reddy Daida

Kubernetes Architecture - Master

Kube
Controller
Manager

Cloud
Controller
Manager

kube-apiserver

kube-
scheduler

etcd

Container Runtime (Docker)

Master • kube-apiserver
• It acts as front end for the Kubernetes control plane. It

exposes the Kubernetes API
• Command line tools (like kubectl), Users and even

Master components (scheduler, controller manager,
etcd) and Worker node components like (Kubelet)
everything talk with API Server.

• etcd
• Consistent and highly-available key value store used as

Kubernetes’ backing store for all cluster data.
• It stores all the masters and worker node information.

• kube-scheduler
• Scheduler is responsible for distributing containers

across multiple nodes.
• It watches for newly created Pods with no assigned

node, and selects a node for them to run on.

StackSimplify© Kalyan Reddy Daida

Kubernetes Architecture - Master

Kube
Controller
Manager

Cloud
Controller
Manager

kube-apiserver

kube-
scheduler

etcd

Container Runtime (Docker)

Master • kube-controller-manager
• Controllers are responsible for noticing and

responding when nodes, containers or endpoints
go down. They make decisions to bring up new
containers in such cases.
• Node Controller: Responsible for noticing and

responding when nodes go down.
• Replication Controller: Responsible for maintaining

the correct number of pods for every replication
controller object in the system.
• Endpoints Controller: Populates the Endpoints

object (that is, joins Services & Pods)
• Service Account & Token Controller: Creates default

accounts and API Access for new namespaces.

StackSimplify© Kalyan Reddy Daida

Kubernetes Architecture - Master

Kube
Controller
Manager

Cloud
Controller
Manager

kube-apiserver

kube-
scheduler

etcd

Container Runtime (Docker)

Master • cloud-controller-manager
• A Kubernetes control plane component that

embeds cloud-specific control logic.
• It only runs controllers that are specific to your

cloud provider.
• On-Premise Kubernetes clusters will not have

this component.
• Node controller: For checking the cloud

provider to determine if a node has been
deleted in the cloud after it stops responding
• Route controller: For setting up routes in the

underlying cloud infrastructure
• Service controller: For creating, updating and

deleting cloud provider load balancer

StackSimplify© Kalyan Reddy Daida

• Kubelet
• Kubelet is the agent that runs on every node

in the cluster

• This agent is responsible for making sure that
containers are running in a Pod on a node.

• Kube-Proxy
• It is a network proxy that runs on each node

in your cluster.

• It maintains network rules on nodes

• In short, these network rules allow network
communication to your Pods from network
sessions inside or outside of your cluster.

Kubernetes Architecture – Worker Nodes

Kube-Proxy

Worker Node

Kubelet

Container Runtime (Docker)

• Container Runtime
• Container Runtime is the underlying

software where we run all these
Kubernetes components.

• We are using Docker, but we have
other runtime options like rkt,
container-d etc.

StackSimplify© Kalyan Reddy Daida

Kubernetes - Architecture

Kube
Controller
Manager

Cloud
Controller
Manager

kube-apiserver

kube-
scheduler

etcd

Container Runtime (Docker)

Master

Kube-Proxy

Worker Node

Kubelet

Container Runtime (Docker)

Kube-Proxy

Worker Node

Kubelet

Container Runtime (Docker)

StackSimplify© Kalyan Reddy Daida

AWS EKS

Cluster

StackSimplify© Kalyan Reddy Daida

EKS Kubernetes - Architecture

EKS
Controller
Manager

Fargate
Controller
Manager

kube-apiserver

kube-
scheduler

etcd

Container Runtime (Docker)

Master

Kube-Proxy

Worker Node -1

Kubelet

Container Runtime (Docker)

Kube-Proxy

Worker Node - 2

Kubelet

Container Runtime (Docker)

EKS Control Plane EKS Node Group

StackSimplify© Kalyan Reddy Daida

Kubernetes

Fundamentals
Pod, ReplicaSet, Deployment & Service

StackSimplify© Kalyan Reddy Daida

Kubernetes - Fundamentals

Pod

ReplicaSet

Deployment

Service

k8s Fundamentals

A POD is a single instance of an Application.
A POD is the smallest object, that you can create in Kubernetes.

A ReplicaSet will maintain a stable set of replica Pods running at
any given time.
In short, it is often used to guarantee the availability of a
specified number of identical Pods

A Deployment runs multiple replicas of your application and
automatically replaces any instances that fail or become unresponsive.
Rollout & rollback changes to applications. Deployments are well-
suited for stateless applications.

A service is an abstraction for pods, providing a stable, so called
virtual IP (VIP) address.
In simple terms, service sits Infront of a POD and acts as a load
balancer.

StackSimplify© Kalyan Reddy Daida

Kubernetes - Imperative & Declarative

Pod

ReplicaSet

Deployment

Service

YAML & kubectl

Pod

ReplicaSet

Deployment

Service

kubectl

Kubernetes Fundamentals

Imperative Declarative

StackSimplify© Kalyan Reddy Daida

Kubernetes

POD

StackSimplify© Kalyan Reddy Daida

Kubernetes - POD

Worker Node

Kubernetes Cluster
Node

N

Nginx Container
Image

POD

N

Worker Node

POD

N

Worker Node

• With Kubernetes our core goal will be to
deploy our applications in the form of
containers on worker nodes in a k8s
cluster.

• Kubernetes does not deploy containers
directly on the worker nodes.

• Container is encapsulated in to a
Kubernetes Object named POD.

• A POD is a single instance of an
application.

• A POD is the smallest object that we can
create in Kubernetes.

StackSimplify© Kalyan Reddy Daida

Kubernetes - POD

Worker Node - 1

POD

Kubernetes Cluster

N

• PODs generally have one to one relationship with containers.

• To scale up we create new POD and to scale down we delete the POD.

POD POD

NN

Worker Node - 2

POD

N

StackSimplify© Kalyan Reddy Daida

Kubernetes – PODs

Worker Node - 1

Kubernetes Cluster

POD

N N

POD

N

Worker Node - 2

• We cannot have multiple containers of same kind in a single POD.

• Example: Two NGINX containers in single POD serving same purpose is not
recommended.

POD

N

POD

N

StackSimplify© Kalyan Reddy Daida

Kubernetes – Multi-Container Pods

Node

POD

Worker Node

Kubernetes Cluster

N H

Helper
Containers

• We can have multiple containers in a single
POD, provided they are not of same kind.

• Helper Containers (Side-car)
• Data Pullers: Pull data required by Main Container
• Data pushers: Push data by collecting from main

container (logs)
• Proxies: Writes static data to html files using

Helper container and Reads using Main Container.

• Communication
• The two containers can easily communicate with

each other easily as they share same network
space.
• They can also easily share same storage space.

• Multi-Container Pods is a rare use-case and we
will try to focus on core fundamentals.

StackSimplify© Kalyan Reddy Daida

Kubernetes

PODs

Demo

StackSimplify© Kalyan Reddy Daida

Kubernetes

Services - NodePort

StackSimplify© Kalyan Reddy Daida

Kubernetes – Service - NodePort

Node

Worker Node

Kubernetes Cluster
NodeWorker Node

POD

N

Worker Node

• We can expose an application running on a set
of PODs using different types of Services
available in k8s.
• ClusterIP
• NodePort
• LoadBalancer

• NodePort Service
• To access our application outside of k8s cluster, we

can use NodePort service.
• Exposes the Service on each Worker Node's IP at a

static port (nothing but NodePort).
• A ClusterIP Service, to which the NodePort Service

routes, is automatically created.
• Port Range 30000-32767

targetPort: 80

Port: 80

Service

NodePort: 3xxx

User

Worker NodePort

ClusterIP Service Port

Container Port in a
POD

http://<Worker-Node-IP>:<NodePort>

StackSimplify© Kalyan Reddy Daida

Kubernetes

POD & NodePort
Service

Demo

StackSimplify© Kalyan Reddy Daida

Kubernetes

ReplicaSets

StackSimplify© Kalyan Reddy Daida

Kubernetes - ReplicaSets

ReplicaSets

High Availability or Reliability

Scaling

Load Balancing

Labels & Selectors

StackSimplify© Kalyan Reddy Daida

• A ReplicaSet’s purpose is to maintain a
stable set of replica Pods running at
any given time.

Kubernetes – ReplicaSet

Worker Node

Kubernetes Cluster

POD

N

POD

N

ReplicaSet

POD

N

• If our application crashes (any pod dies),
replicaset will recreate the pod immediately
to ensure the configured number of pods
running at any given time.

Reliability
Or

High Availability

StackSimplify© Kalyan Reddy Daida

Kubernetes – ReplicaSet

Worker Node

Kubernetes Cluster

Worker Node

POD

N

POD

N

POD

N

POD

N

ReplicaSet

• Load Balancing
• To avoid overloading of

traffic to single pod we can
use load balancing.
• Kubernetes provides pod

load balancing out of the
box using Services for the
pods which are part of a
ReplicaSet
• Labels & Selectors are the

key items which ties all 3
together (Pod, ReplicaSet &
Service), we will know in
detail when we are writing
YAML manifests for these
objects

Service

StackSimplify© Kalyan Reddy Daida

Kubernetes – ReplicaSet

Worker Node

Kubernetes Cluster

Worker Node

POD

N

POD

N

POD

N

POD

N

ReplicaSet

• Scaling

• When load become too
much for the number of
existing pods, Kubernetes
enables us to easily scale
up our application, adding
additional pods as
needed.

• This is going to be
seamless and super quick.

Service

StackSimplify© Kalyan Reddy Daida

Kubernetes

ReplicaSets

Demo

StackSimplify© Kalyan Reddy Daida

Kubernetes

Deployments

StackSimplify© Kalyan Reddy Daida

Kubernetes – Deployments

Worker Node - 1
Kubernetes Cluster

Worker Node - 2

POD

N

POD

N

POD

N

POD

N

ReplicaSet

Deployment

Service

StackSimplify© Kalyan Reddy Daida

Kubernetes - Deployment

Deployments

Create a Deployment to rollout a ReplicaSet

Updating the Deployment

Rolling Back a Deployment

Scaling a Deployment

Pausing and Resuming a Deployment

Deployment Status

Clean up Policy

Canary Deployments

StackSimplify© Kalyan Reddy Daida

Kubernetes

Deployments

Demo

StackSimplify© Kalyan Reddy Daida

Kubernetes

Services

StackSimplify© Kalyan Reddy Daida

Kubernetes - Services

Services

ClusterIP

NodePort

LoadBalancer

Ingress

externalName

Used for communication between applications inside k8s cluster
(Example: Frontend application accessing backend application)

Used for accessing applications outside of of k8s cluster using Worker
Node Ports (Example: Accessing Frontend application on browser)

Primarily for Cloud Providers to integrate with their Load Balancer
services (Example: AWS Elastic Load Balancer)

Ingress is an advanced load balancer which provides Context path
based routing, SSL, SSL Redirect and many more (Example: AWS ALB)

To access externally hosted apps in k8s cluster (Example: Access AWS
RDS Database endpoint by application present inside k8s cluster)

StackSimplify© Kalyan Reddy Daida

POD

N

POD

N

ReplicaSet
Deployment (app=frontend)

Frontend App – NodePort or LoadBalancer or Ingress Service

POD POD

ReplicaSet

Deployment (app=Backend)

Backend App - ClusterIP Service

B B

POD

B

POD

N

Kubernetes Cluster

D
B

 –
Ex

te
rn

al
N

am
e

Se
rv

ic
e

AWS Cloud

AWS RDS Database

Users

Services

StackSimplify© Kalyan Reddy Daida

Kubernetes

Services

Demo

StackSimplify© Kalyan Reddy Daida

POD

N

ReplicaSet

Deployment (app=frontend)

Frontend App – NodePort Service

POD

ReplicaSet
Deployment (app=Backend)

Backend App - ClusterIP Service

B

Kubernetes Cluster

Users

Services Demo

http://<workernode-public-ip>:<NodePort>/hello

StackSimplify© Kalyan Reddy Daida

Kubernetes

YAML Basics

StackSimplify© Kalyan Reddy Daida

• YAML is not a Markup Language

• YAML is used to store information about different things

• We can use YAML to define key, Value pairs like variables, lists and
objects

• YAML is very similar to JSON (Javascript Object Notation)

• YAML primarily focuses on readability and user friendliness

• YAML is designed to be clean and easy to read

• We can define YAML files with two different extensions
• abc.yml
• abc.yaml

YAML Basics

StackSimplify© Kalyan Reddy Daida

• YAML Comments

• YAML Key Value Pairs

• YAML Dictionary or Map

• YAML Array / Lists

• YAML Spaces

• YAML Document Separator

YAML Basics

StackSimplify© Kalyan Reddy Daida

AWS EKS

Storage

StackSimplify© Kalyan Reddy Daida

EKS Storage

In-Tree EBS Provisioner EBS CSI Driver EFS CSI Driver FSx for Luster CSI

CSI means Container Storage Interface

Latest & Greatest available today & in Beta release & ready for production use

As on today, not supported on AWS EKS Fargate (Serverless)

Allows EKS Clusters to manage lifecycle of EBS Volumes for persistent storage, EFS File
systems & FSx for Luster File systems

Supported for k8s 1.14 & later
Supported for k8s 1.16 &

later

Legacy

Will be deprecated soon

StackSimplify© Kalyan Reddy Daida

AWS EKS Storage

EBS CSI Driver

StackSimplify© Kalyan Reddy Daida

• EBS provides block level storage volumes for use with EC2 & Container
instances.
• We can mount these volumes as devices on our EC2 & Container instances.
• EBS volumes that are attached to an instance are exposed as storage

volumes that persist independently from the life of the EC2 or Container
instance.
• We can dynamically change the configuration of a volume attached to an

instance.
• AWS recommends EBS for data that must be quickly accessible and requires

long-term persistence.
• EBS is well suited to both database-style applications that rely on random

reads and writes, and to throughput-intensive applications that perform
long, continuous reads and writes.

AWS Elastic Block Store - Introduction

StackSimplify© Kalyan Reddy Daida

POD

ReplicaSet
Deployment (mysql)

MySQL – ClusterIP Service

MySql

EKS Cluster

Environment Variables

Volumes

Volume Mounts

ClusterIP Service

Storage Class

Persistent Volume Claim

Config Map

Deployment

AWS Elastic Block Store - EBS

EKS Storage
EBS CSI Driver

StackSimplify© Kalyan Reddy Daida

POD

REST
API

ReplicaSet

Deployment (UserMgmt)

UserMgmt – NodePort Service

POD

ReplicaSet
Deployment (mysql)

MySQL – ClusterIP Service

MySql

EKS Cluster

Environment Variables

Volumes

Volume Mounts

ClusterIP Service

Storage Class

Persistent Volume Claim

Config Map

Deployment

NodePort Service

Deployment

Environment Variables

AWS Elastic Block Store - EBS

EKS Storage
EBS CSI Driver

Users

http://<workernode-public-ip>:<NodePort>/usermgmt/<apis>

StackSimplify© Kalyan Reddy Daida

AWS EKS Storage

EBS CSI Driver
Important k8s Concepts

for Application Deployments

Elastic Block Store

StackSimplify© Kalyan Reddy Daida

POD

REST
API

ReplicaSet

Deployment (UserMgmt)

UserMgmt – NodePort Service

POD

ReplicaSet
Deployment (mysql)

MySQL – ClusterIP Service

MySql

EKS Cluster

Environment Variables

Volumes

Volume Mounts

ClusterIP Service

Storage Class

Persistent Volume Claim

Config Map

Deployment

NodePort Service

Deployment

Environment Variables

AWS Elastic Block Store - EBS

EKS Storage
EBS CSI Driver

Users

http://<workernode-public-ip>:<NodePort>/usermgmt/<apis>

Namespaces

Init Containers

Liveness & Readiness
Probes

Requests & Limits

Secrets

StackSimplify© Kalyan Reddy Daida

Probes

Liveness Probe Readiness Probe Startup Probe

Kubelet uses liveness probes to know
when to restart a container

Kubelet uses readiness probes to know
when a container is ready to accept traffic

Kubelet uses startup probes to know when
a container application has started

Liveness probes could catch a deadlock,
where an application is running, but
unable to make progress and restarting
container helps in such state

Firstly this proble disables liveness &
readiness checks until it succeeds ensuring
those pods don’t interfere with app
startup.

This can be used to adopt liveness checks on
slow starting containers, avoiding them
getting killed by the kubelet before they are
up and running.

When a Pod is not ready, it is removed
from Service load balancers based on this
readiness probe signal.

Check using Commands

Check using HTTP GET Request

Check using TCP

/bin/sh –c nc -z localhost 8095

httpget path:/health-status

tcpSocket Port: 8095

Options to define Probes

Probes

StackSimplify© Kalyan Reddy Daida

Kubernetes

Namespaces

StackSimplify© Kalyan Reddy Daida

• Namespaces are also called Virtual clusters
in our physical k8s cluster

• We use this in environments where we have
many users spread across multiple teams or
projects

• Clusters with tens of users ideally don’t
need to use namespaces

• Benefits
• Creates isolation boundary from other k8s

objects
• We can limit the resources like CPU, Memory

on per namespace basis (Resource Quota).

Namespaces - Introduction

StackSimplify© Kalyan Reddy Daida

Deployment

Pod

F

ReplicaSet
Deployment

Pod

B

ReplicaSet

ClusterIP Service

LoadBalancer Service

Deployment

Namespace: dev

Pod

F

ReplicaSet
Deployment

Pod

B

ReplicaSet

ClusterIP Service

LoadBalancer Service

Deployment

Namespace: qa

Pod

F

ReplicaSet
Deployment

Pod

B

ReplicaSet

ClusterIP Service

LoadBalancer Service

Deployment

Namespace: staging

Namespaces

Namespace Manifest - Declarative

Namespace Manifest - Imperative

StackSimplify© Kalyan Reddy Daida

Deployment

Pod

F

ReplicaSet
Deployment

Pod

B

ReplicaSet

ClusterIP Service

LoadBalancer Service

Deployment

Namespace: dev

Pod

F

ReplicaSet
Deployment

Pod

B

ReplicaSet

ClusterIP Service

LoadBalancer Service

Deployment

Namespace: qa

Pod

F

ReplicaSet
Deployment

Pod

B

ReplicaSet

ClusterIP Service

LoadBalancer Service

Deployment

Namespace: staging

CPU Memory

default Min/Max

Limit Range (Per Container)

CPU Memory

default Min/Max

Limit Range (Per Container)

CPU Memory

default Min/Max

Limit Range (Per Container)

Limit Range Manifest

Limit Range

StackSimplify© Kalyan Reddy Daida

Deployment

Pod

F

ReplicaSet
Deployment

Pod

B

ReplicaSet

ClusterIP Service

LoadBalancer Service

Deployment

Namespace: dev

Pod

F

ReplicaSet
Deployment

Pod

B

ReplicaSet

ClusterIP Service

LoadBalancer Service

Deployment

Namespace: qa

Pod

F

ReplicaSet
Deployment

Pod

B

ReplicaSet

ClusterIP Service

LoadBalancer Service

Deployment

Namespace: staging

CPU Memory

Pods Services

Resource Quota

CPU Memory

Pods Services

Resource Quota

CPU Memory

Pods Services

Resource Quota

Resource Quota Manifest

Resource Quota

StackSimplify© Kalyan Reddy Daida

AWS EKS

&

RDS Database

Amazon RDS

StackSimplify© Kalyan Reddy Daida

POD

REST
API

ReplicaSet

Deployment (UserMgmt)

UserMgmt – NodePort Service

POD

ReplicaSet
Deployment (mysql)

MySQL – ClusterIP Service

MySql

EKS Cluster

Environment Variables

Volumes

Volume Mounts

ClusterIP Service

Storage Class

Persistent Volume Claim

Config Map

Deployment

NodePort Service

Deployment

Environment Variables

AWS Elastic Block Store - EBS

EKS Storage
EBS CSI Driver

Users

http://<workernode-public-ip>:<NodePort>/usermgmt/<apis>

StatefulSetsComplex setup to achieve HA

Complex Multi-Az support for EBS

Complex Master-Master MySQL setup

Complex Master-Slave MySQL setup

No Automatic Backup & Recovery

Drawbacks of EBS CSI for MySQL DB

No Auto-Upgrade MySQL

StackSimplify© Kalyan Reddy Daida

POD

REST
API

ReplicaSet

Deployment (UserMgmt)

UserMgmt – NodePort Service

MySQL – ExternalName Service

EKS Cluster

ExternalName Service

NoePort Service

Deployment

Environment Variables
AWS

RDS Database

Users

http://<workernode-public-ip>:<NodePort>/usermgmt/<apis>

Amazon RDS

High Availability

Backup & Recovery

Read Replicas

Metrics & Monitoring

Automatic Upgrades

Multi-AZ Support

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

EC2 Worker Node-1

Public subnet

EC2 Worker Node-2

Deployment

ReplicaSetU

Pod

U

Pod

U

Pod

U

Pod

User Management – Node Port Service

MySQL – External Name Service

Private subnet Private subnet

Amazon RDS Amazon RDS

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

&
RDS Database

http://<workernode-public-ip>:<NodePort>/usermgmt/<apis>

StackSimplify© Kalyan Reddy Daida

AWS

Elastic Load Balancing
Overview

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

StackSimplify© Kalyan Reddy Daida

Elastic Load Balancing

Classic Load Balancer Network Load Balancer Application Load Balancer

https://aws.amazon.com/elasticloadbalancing/features/#compare

StackSimplify© Kalyan Reddy Daida

AWS EKS

&

RDS & ELB
Classic Load Balancer

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

EC2 Worker Node-1

Public subnet

EC2 Worker Node-2

Deployment

ReplicaSetU

Pod

U

Pod

U

Pod

U

Pod

User Management – Node Port Service

MySQL – External Name Service

Private subnet Private subnet

Amazon RDS Amazon RDS

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

&
RDS Database

http://<workernode-public-ip>:<NodePort>/usermgmt/<apis>

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Classic Load Balancer Service

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Classic Load Balancer

Classic Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

Deployment

ReplicaSetU

Pod

U

Pod

U

Pod

U

Pod

Classic CLB DNS URL

EKS Private NodeGroup

NAT gateway NAT gateway

StackSimplify© Kalyan Reddy Daida

AWS EKS

&

RDS & ELB
Network Load Balancer

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Network Load Balancer Service

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Network Load Balancer

Network Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

Deployment

ReplicaSetU

Pod

U

Pod

U

Pod

U

Pod

NLB DNS URL

EKS Private NodeGroup

NAT gateway NAT gateway

StackSimplify© Kalyan Reddy Daida

AWS EKS

&

RDS & ELB
Application Load Balancer

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

StackSimplify© Kalyan Reddy Daida

How Ingress
Works?

StackSimplify© Kalyan Reddy Daida

k8s ClusterRole k8s ClusterRoleBindingk8s ServiceAccount

https://raw.githubusercontent.com/kubernetes-sigs/aws-alb-ingress-controller/master/docs/examples/iam-policy.json

AWS IAM Policy

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Application Load Balancer Service (Ingress)

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Application

Load Balancer & Route53
Ingress & External-DNS

Application Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

EKS Private NodeGroup

NAT gateway NAT gateway

Deployment: UMS
ReplicaSet

U

Pod

/*Ingress

HTTP → HTTPS

User Management – Node Port Service

/app2/*/app1/*

Deployment: app1
ReplicaSet

N

Pod

Deployment: app2
ReplicaSet

N

Pod

app1- NodePort SVC app2 -NodePort SVC

SSL

AWS Certificate Manager

Amazon Route 53

HTTPS URLS
https://apps.kubeoncloud.com/usermgmt/users

SSL Redirect

apps.kubeoncloud.com

external-dns

StackSimplify© Kalyan Reddy Daida

AWS EKS

RDS & ELB
Application Load Balancer

Ingress Controller Basics

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Application Load Balancer Service (Ingress)

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Application

Load Balancer

Application Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

EKS Private NodeGroup

NAT gateway NAT gateway

Deployment: UMS
ReplicaSet

U

Pod

/* Ingress

http://ALB-DNS-URL/usermgmt/users

User Management – Node Port Service

StackSimplify© Kalyan Reddy Daida

AWS EKS

RDS & ELB
Application Load Balancer

Ingress Context Path
based Routing

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Application Load Balancer Service (Ingress)

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Application

Load Balancer
Context path based Routing

Application Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

EKS Private NodeGroup

NAT gateway NAT gateway

Deployment: UMS
ReplicaSet

U

Pod

/*Ingress

http://ALB-DNS-URL/usermgmt/users

User Management – Node Port Service

/app2/*/app1/*

Deployment: app1
ReplicaSet

N

Pod

Deployment: app2
ReplicaSet

N

Pod

app1- NodePort SVC app2 -NodePort SVC

http://ALB-DNS-URL/app1/index.html

http://ALB-DNS-URL/app2/index.html

StackSimplify© Kalyan Reddy Daida

AWS EKS

RDS & ELB
Application Load Balancer

Ingress SSL

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Application Load Balancer Service (Ingress)

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Application

Load Balancer
Ingress SSL

Application Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

EKS Private NodeGroup

NAT gateway NAT gateway

Deployment: UMS
ReplicaSet

U

Pod

/*Ingress

HTTP URLS
http://ssldemo.kubeoncloud.com/usermgmt/users
http://ssldemo.kubeoncloud.com/app1/index.html
http://ssldemo.kubeoncloud.com/app2/index.html

User Management – Node Port Service

/app2/*/app1/*

Deployment: app1
ReplicaSet

N

Pod

Deployment: app2
ReplicaSet

N

Pod

app1- NodePort SVC app2 -NodePort SVC

SSL

AWS Certificate Manager

Amazon Route 53

HTTPS URLS
https://ssldemo.kubeoncloud.com/usermgmt/users
https://ssldemo.kubeoncloud.com/app1/index.html
https://ssldemo.kubeoncloud.com/app2/index.html

StackSimplify© Kalyan Reddy Daida

AWS EKS

RDS & ELB
Application Load Balancer

Ingress SSL Redirect

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Application Load Balancer Service (Ingress)

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Application

Load Balancer
Ingress SSL Redirect

Application Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

EKS Private NodeGroup

NAT gateway NAT gateway

Deployment: UMS
ReplicaSet

U

Pod

/*Ingress

HTTP → HTTPS

User Management – Node Port Service

/app2/*/app1/*

Deployment: app1
ReplicaSet

N

Pod

Deployment: app2
ReplicaSet

N

Pod

app1- NodePort SVC app2 -NodePort SVC

SSL

AWS Certificate Manager

Amazon Route 53

HTTPS URLS
https://ssldemo.kubeoncloud.com/usermgmt/users
https://ssldemo.kubeoncloud.com/app1/index.html
https://ssldemo.kubeoncloud.com/app2/index.html

SSL Redirect

StackSimplify© Kalyan Reddy Daida

AWS EKS

RDS & ELB
Application Load Balancer

& Route53

Ingress & External-DNS

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Application Load Balancer Service (Ingress)

Users

EKS Cluster Control Plane

AWS EKS
Network Design

With
EKS Workload

RDS & ELB
Application

Load Balancer & Route53
Ingress & External-DNS

Application Load Balancer

Private subnet Private subnet

Amazon RDS DB Amazon RDS DB

EC2 Worker Node-1 EC2 Worker Node-2

MySQL – External Name Service

EKS Private NodeGroup

NAT gateway NAT gateway

Deployment: UMS
ReplicaSet

U

Pod

/*Ingress

HTTP → HTTPS

User Management – Node Port Service

/app2/*/app1/*

Deployment: app1
ReplicaSet

N

Pod

Deployment: app2
ReplicaSet

N

Pod

app1- NodePort SVC app2 -NodePort SVC

SSL

AWS Certificate Manager

Amazon Route 53

HTTPS URLS
https://dnstest1.kubeoncloud.com/usermgmt/users
https://dnstest1.kubeoncloud.com/app1/index.html
https://dnstest1.kubeoncloud.com/app2/index.html
https://dnstest2.kubeoncloud.com/usermgmt/users
https://dnstest2.kubeoncloud.com/app1/index.html
https://dnstest2.kubeoncloud.com/app2/index.html

SSL Redirect

dnstest1.kubeoncloud.com
dnstest2.kubeoncloud.com

external-dns

StackSimplify© Kalyan Reddy Daida

AWS EKS
Fargate Profiles

Serverless

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

StackSimplify© Kalyan Reddy Daida

• Fargate is a Serverless compute platform for containers on AWS

• Fargate provides on-demand, right-sized compute capacity for containers

• EKS integrates Kubernetes with Fargate by using controllers that are built by
AWS using the upstream, extensible model provided by Kubernetes.

• These controllers run as part of the EKS managed Kubernetes control plane
and are responsible for scheduling native Kubernetes pods onto Fargate.

• The Fargate controllers include a new scheduler that runs alongside the
default Kubernetes scheduler in addition to several mutating and validating
admission controllers.

• When we start a pod that meets the criteria for running on Fargate, the
Fargate controllers running in the cluster recognize, update, and schedule
the pod onto Fargate.

What is Fargate?

StackSimplify© Kalyan Reddy Daida

• We don’t need to
change our existing
pods

• Fargate works with
existing workflows and
services that run on
kubernetes

AWS EKS on Fargate

• Launch pods easily.

• Easily run pods across
Azs for HA

• Each pod runs in an
isolated compute
environment

• Only pay for resources
you need to run your
pods

• Includes native AWS
integrations for
networking and security

Bring existing pods Production Ready Rightsized and Integrated

=

StackSimplify© Kalyan Reddy Daida

EKS Deployment Options

EKS Deployment Options

Only EC2 Node Groups

Mixed

Only Fargate

Managed EC2 Nodes

Unmanaged EC2 Nodes

Managed Nodes

Unmanaged EC2 Nodes

Fargate Nodes

Fargate Nodes

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Managed Node Groups

Auto Scaling group
EC2 Instance EC 2Instance

EKS Public Managed Node Group

Auto Scaling group
EC2 Instance EC 2Instance

EKS Private Managed Node Group

EKS Cluster

EKS Deployment Options – EC2 Node Groups

We can deploy EC2
Managed Node

Groups in both public
and private subnets of

a VPC

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

EKS Fargate Profiles

EKS Cluster

EKS Deployment Options – Only Fargate

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

Fargate Profile
Fargate EC2 Instance Fargate EC2 Instance

EKS Fargate

Pods running on
Fargate are only

supported on private
subnets

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Managed Node Groups EKS Fargate Profiles

Auto Scaling group
EC2 Instance EC 2Instance

EKS Public Managed Node Group

Auto Scaling group
EC2 Instance EC 2Instance

EKS Private Managed Node Group

EKS Cluster

EKS Deployment Options - Mixed

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

Fargate Profile
Fargate EC2 Instance Fargate EC2 Instance

EKS Fargate

StackSimplify© Kalyan Reddy Daida

EKS Fargate vs Managed vs Unmanaged Nodes

StackSimplify© Kalyan Reddy Daida

• There are many considerations we need to be aware of before we
decide our Kubernetes workloads to run on Fargate.

• Documentation Link

• https://docs.aws.amazon.com/eks/latest/userguide/fargate.html

EKS Fargate Considerations

https://docs.aws.amazon.com/eks/latest/userguide/fargate.html

StackSimplify© Kalyan Reddy Daida

AWS EKS
Fargate Profiles

Basics

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Managed Node Groups EKS Fargate Profiles

EKS Fargate

Auto Scaling group
EC2 Instance EC 2Instance

EKS Public Managed Node Group

Auto Scaling group
EC2 Instance EC 2Instance

EKS Private Managed Node Group

EKS Cluster

EKS Deployment Options - Mixed

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Managed Node Groups EKS Fargate Profiles

Auto Scaling group
EC2 Instance EC 2Instance

EKS Public Managed Node Group

Auto Scaling group
EC2 Instance EC2 Instance

EKS Private Managed Node Group

EKS Cluster

EKS Deployment Options - Mixed

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

Fargate Profile
Fargate EC2 Instance Fargate EC2 Instance

EKS Fargate

Fargate Profiles can be deployed to
EKS Cluster only when we have at least

one private subnet

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a Availability Zone: us-east-1b

Public subnet

User Management – Application Load Balancer Service (Ingress)

Users

EKS Cluster Control Plane

AWS EKS
Fargate Profiles

Basics

Application Load Balancer

Private subnet Private subnet

Fargate Node-1 Fargate Node-2

Fargate Profile: fp-dev

NAT gateway NAT gateway
Ingress/*

Deployment: app1

ReplicaSetN

Pod

app1- NodePort Service

SSL

AWS Certificate Manager

Amazon Route 53

https://fpdev.kubeoncloud.com/app1/index.html

SSL Redirect

fpdev.kubeoncloud.com

external-dns

N

Pod

StackSimplify© Kalyan Reddy Daida

AWS EKS
Fargate Profiles

Advanced with YAML

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Managed Node Groups EKS Fargate Profiles

EKS Cluster

Availability Zone: us-east-1a

Private subnet

Availability Zone: us-east-1b

Private subnet

EKS Fargate

Fargate Profile: App2
N

App2 Pod

N

App2 Pod

Fargate Profile: UMS
U

UMS Pod

U

UMS Pod

Auto Scaling group

EKS Private Managed Node Group

N

App1 Pod

N

App1 Pod

App1 - NodePort Service

Ingress

AWS Certificate Manager

Amazon Route 53

Users

App1 - Ingress

App2 - Ingress

UMS - Ingress

Amazon RDS DB

App2 - NodePort Service

UMS - NodePort Service

MySQL – ExternalName Service

NS: ns-app1
NS: ns-app2

NS: ns-ums

app1. kubeoncloud.com
app2.kubeoncloud.com
ums.kubeoncloud,comapp1.kubeoncloud.com app2.kubeoncloud.com ums.kubeoncloud.com

EKS Deployment Options – Mixed Mode - 3 Apps

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Managed Node Groups EKS Fargate Profiles

EKS Cluster

Availability Zone: us-east-1a

Private subnet

Availability Zone: us-east-1b

Private subnet

EKS Fargate

Fargate Profile: App2
N

App2 Pod

N

App2 Pod

Fargate Profile: UMS
U

UMS Pod

U

UMS Pod

Auto Scaling group

EKS Private Managed Node Group

N

App1 Pod

N

App1 Pod

App1 - NodePort Service

Ingress

AWS Certificate Manager

Amazon Route 53

Users

App1 - Ingress

Amazon RDS DB

App2 - NodePort Service

UMS - NodePort Service

MySQL – ExternalName Service

NS: ns-app1
NS: ns-app2

NS: ns-ums

app1. kubeoncloud.com
app2.kubeoncloud.com
ums.kubeoncloud,com

app1. kubeoncloud.com
app2.kubeoncloud.com
ums.kubeoncloud,com

/app1/*
/app2/*

/ums/*

Ingress with Cross Namespaces is not supported as on today

EKS Deployment – Mixed – Ingress with Cross Namespaces

StackSimplify© Kalyan Reddy Daida

AWS EKS
ECR

Elastic Container Registry

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

Elastic Container
Registry

StackSimplifyKalyan Reddy Daida

• Elastic Container Registry (ECR) is a fully-managed Docker container registry
that makes it easy for developers to store, manage, and deploy Docker
container images.
• ECR is integrated with Elastic Kubernetes Service (EKS), simplifying our

development to production workflow.
• ECR eliminates the need to operate our own container repositories or worry

about scaling the underlying infrastructure.
• ECR hosts our images in a highly available and scalable architecture,

allowing us to reliably deploy containers for our applications.
• Integration with AWS Identity and Access Management (IAM) provides

resource-level control of each repository.
• With Amazon ECR, there are no upfront fees or commitments. We pay only

for the amount of data you store in your repositories and data transferred
to the Internet.

Elastic Container Registry - ECR

StackSimplifyKalyan Reddy Daida

• Benefits
• Full managed

• Secure

• Highly Available

• Simplified Workflow

Elastic Container Registry - ECR

StackSimplifyKalyan Reddy Daida

How ECR Works?

Elastic Container Registry - ECR

Docker Image

Developer

Elastic Container Service - ECS

Docker Container

Elastic Kubernetes Service - EKS

Docker Container

On-Premise

Docker Container

Pull
Images

and Run
Containers

Push Images

Pull Images

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

Public subnet

Availability Zone: us-east-1b

Private subnet

EKS Private Managed Node Group

EKS Cluster

Ingress

AWS Certificate Manager
Amazon Route 53

Users

ECR Demo - ALB Ingress Service

ecrdemo.kubeoncloud.com

http://ecrdemo.kubeoncloud.com

EKS & ECR

EC2 Worker Node-1 EC2 Worker Node-2

N

Pod

N

Pod

ECR Demo App - NodePort Service

Elastic Container Registry - ECR

Docker Image

Developer

Push Images

Pull Docker Image from ECR

NAT gatewayNAT gateway

StackSimplify© Kalyan Reddy Daida

AWS EKS
&

AWS Developer Tools

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

Elastic Container
Registry

Code
Commit

Code
Build

Code
Pipeline

StackSimplifyKalyan Reddy Daida

• Deployment to

production

environments

• Monitor codein

production to

quickly detect

errors

Source

• Check-in source

code

• Peer review new

code

• Pull Request

process

Build ProductionTest

• Deployment to

production

environments

• Monitor codein

production to

quickly detect

errors

• Compile Code &

build artifacts (war

,jar, container

images,

Kubernetes

manifest files)

• Unit Tests

• Integration tests

with other

systems.

• Load Testing

• UI Tests

• Security Tests

• Test Environments

(Dev, QA and

Staging)

Stages in Release Process

StackSimplifyKalyan Reddy Daida

Stages in Release Process

Source Build ProductionTest

StackSimplifyKalyan Reddy Daida

Continuous Integration

Source Build ProductionTest

• Automatically kick off a new release when new code is checked-in

• Build and test code in a consistent, repeatableenvironment

• Continually have an artifact ready for deployment

StackSimplifyKalyan Reddy Daida

Continuous Delivery

Source Build ProductionTest

• Automatically deploy new changes to staging environments fortesting

• Deploy to production safely without affectingcustomers

• Deliver to customers faster

• Increase deployment frequency, and reduce change lead time and change failure

rate

StackSimplifyKalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +

Third Party

AWSCodeCommit AWSCodeBuild AWS CloudWatch

Container Insights

AWSCodePipeline

CodeBuild kubectl

StackSimplifyKalyan Reddy Daida

Source

AWS Developer Tools or Code Services

Build Test Deploy Monitor

AWS CodeBuild +

Third Party

AWSCodeCommit AWSCodeBuild

AWSCodePipeline

AWS CloudWatch

Container Insights

CodeBuild kubectl

StackSimplify

AWS CodeCommit

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

• Version Control Service hosted by AWS

• We can privately store and manage documents, source code, and
binary files

• Secure & highly scalable

• Supports standard functionality of Git (CodeCommit supports Git
versions 1.7.9 and later.)

• Uses a static user name and password in addition to standard SSH..

AWS CodeCommit - Introduction

StackSimplifyKalyan Reddy Daida

CodeCommit – Integration with AWS Services

AWS CodeCommit

AWS CodeStar AWS CodeBuild AWS CodePipeline AWS Cloud9 AWS Amplify AWS CloudFormation

Amazon CloudWatchAWS CloudTrailAWS Elastic BeanstalkAWS Key Management
Service

Amazon Simple Notification
Service

StackSimplifyKalyan Reddy Daida

CodeCommit - Steps

AWS CodeCommit

AWS Cloud

Local Git
Repo

push

Developer

StackSimplify

AWS CodeBuild

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

• CodeBuild is a fully managed build service in the cloud.

• Compiles our source code, runs unit tests, and produces artifacts
that are ready to deploy.

• Eliminates the need to provision, manage, and scale our own build
servers.

• It provides prepackaged build environments for the most popular
programming languages and build tools such as Apache Maven,
Gradle, and many more.

• We can also customize build environments in CodeBuild to use our
own build tools.

• Scales automatically to meet peak build requests.

CodeBuild - Introduction

StackSimplifyKalyan Reddy Daida

How to run CodeBuild? How CodeBuild works?

StackSimplifyKalyan Reddy Daida

AWS CodeBuild

AWS CodeCommit
Amazon Simple Storage

Service (S3) GitHub GitHub Enterprise Bitbucket

Source

Amazon Simple Storage
Service (S3)

Build Artifacts

Amazon EC2 Container
Registry

AWS Managed Image

External Container
Registry (Docker

Hub)

Build Environment

Amazon CloudWatch

Build Logs

AWS CodeBuild Architecture

Amazon Simple Notification
Service

Build Notifications

StackSimplifyKalyan Reddy Daida

CodeBuild - Steps

AWS Cloud

Local Git
Repo

Developer

push

AWS CodeCommit

AWS CodeBuild Simple Storage
Service (S3)

Commit code changes

StackSimplify

AWS CodePipeline

Kalyan Reddy Daida

StackSimplifyKalyan Reddy Daida

• AWS CodePipeline is a continuous delivery service to model,
visualize, and automate the steps required to release your software.

• Benefits
• We can automate our release processes.

• We can establish a consistent release process.

• We can speed up delivery while improving quality.

• Supports external tools integration for source, build and deploy.

• View progress at a glance

• View pipeline history details.

CodePipeline - Introduction

StackSimplifyKalyan Reddy Daida

AWS CodePipeline

AWS CodeCommit

Amazon EC2 Container
Registry

Simple Storage
Service (S3)

GitHub

AWS CodeBuild

Jenkins

AWS CloudFormation

AWS CodeDeploy

AWS Elastic Beanstalk

AWS Service Catalog

Amazon Elastic Container
Service

Amazon Elastic Container
Service (Blue/Green)

Simple Storage
Service (S3)

Source Build Deploy

Amazon CloudWatch

GitHub Webhooks

Monitor Source Changes

AWS CodePipeline Architecture

StackSimplifyKalyan Reddy Daida

Continuous Delivery

©Amazon

StackSimplifyKalyan Reddy Daida

AWS Cloud

Local Git
Repo

Developer

push

Commit code changes

Worker Node -2

Elastic Kubernetes Service

Worker Node-1

CodeCommit CodeBuild

S3

CloudWatch CodePipeline

CI CD Process

ECR

EKS Cluster

Deployment: app1

ReplicaSet
N

Pod

N

Pod

StackSimplify© Kalyan Reddy Daida

AWS EKS
What are Microservices?

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

Elastic Container
Registry

Code
Commit

Code
Build

Code
Pipeline

Simple Email
Service

StackSimplifyKalyan Reddy Daida

• Microservices - also known as the microservice architecture - is an
architectural style that structures an application as a collection of
services that are
• Highly maintainable and testable

• Loosely coupled

• Independently deployable

• Organized around business capabilities

• Owned by a small team

What are Microservices?

StackSimplifyKalyan Reddy Daida

• Developer independence: Small teams work in parallel and can iterate
faster than large teams.

• Isolation and resilience: If a component dies, you spin up another while
and the rest of the application continues to function.

• Scalability: Smaller components take up fewer resources and can be scaled
to meet increasing demand of that component only.

• Lifecycle automation: Individual components are easier to fit into
continuous delivery pipelines and complex deployment scenarios not
possible with monoliths.

• Relationship to the business: Microservice architectures are split along
business domain boundaries, increasing independence and understanding
across the organization.

Microservices - Benefits

StackSimplify© Kalyan Reddy Daida

AWS EKS
Microservices
Deployment

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

Elastic Container
Registry

Code
Commit

Code
Build

Code
Pipeline

Simple Email
Service

StackSimplifyKalyan Reddy Daida

Microservices

Create User API

List Users API

Delete User API

Health Status API

User Management Microservice

Send Notification
API

Health Status API

Notification Microservice

End User

Email

Postman
Client

API Developer
Or

API User
Users DB

SMTP
Server

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

EKS Cluster

Amazon Route 53

Users

ums.kubeoncloud.com
services.kubeoncloud.com

Microservices Deployment on AWS EKS

Public subnet

Availability Zone: us-east-1a

Private subnet

Simple Email
Service (SES)

End User

Email

Amazon RDS DBAmazon RDS DB

AWS Certificate
Manager

EKS Managed Node Groups

EC2 Worker Node-1

NAT gateway

EC2 Worker Node-2

Notification – ClusterIP Service

Notification Microservice Deployment
N

NS Pod

SMTP – External Name Service

UMS – NodePort Service

Usermgmt Microservice Deployment
U

UMS Pod

U

UMS Pod

MySQL – External Name Service

NAT gateway

N

NS Pod

UMS – Ingress Service

Ingress
Application Load Balancer

https://ums.kubeoncloud.com/usermgmt/user

StackSimplify© Kalyan Reddy Daida

AWS EKS

Microservices Distributed
Tracing

AWS X-Ray

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

Elastic Container
Registry

Code
Commit

Code
Build

Code
Pipeline

Simple Email
Service

X-Ray

StackSimplify© Kalyan Reddy Daida

• AWS X-Ray helps analyse and debug distributed applications built
using microservices architecture.

• With X-Ray, we can understand how our application and its
underlying services are performing to identify and troubleshoot the
root cause of performance issues and errors.

• X-Ray provides an end-to-end view of requests as they travel
through our application and shows a map of our application’s
underlying components.

• We can also use X-Ray to analyse applications in development and in
production, from simple three-tier applications to complex
microservices applications consisting of thousands of services.

AWS X-Ray Introduction

StackSimplify© Kalyan Reddy Daida

• Review request behavior

• Discover application issues

• Improve application performance

• Ready to use with AWS

• Designed for a variety of applications

AWS X-Ray - Benefits

StackSimplify© Kalyan Reddy Daida

AWS X-Ray – How it works?

© Amazon

StackSimplify© Kalyan Reddy Daida

• A DaemonSet ensures that all (or some) Nodes run a copy of a Pod.
• As nodes are added to the cluster, Pods are added to them.
• As nodes are removed from the cluster, those Pods are garbage collected.
• Deleting a DaemonSet will clean up the Pods it created.

• Some typical uses of a DaemonSet are:
• running a logs collection daemon on every node (Example: fluentd)
• running a node monitoring daemon on every node (Example: cloudwatchagent)
• running an application trace collection daemon on every node (Example: AWS X-

Ray)

• In a simple case, one DaemonSet, covering all nodes, would be used for
each type of daemon.
• A more complex setup might use multiple DaemonSets for a single type of

daemon, but with different flags and/or different memory and cpu requests
for different hardware types

Kubernetes DaemonSets - Introduction

StackSimplify© Kalyan Reddy Daida

Kubernetes – DaemonSets

Worker Node - 1
Kubernetes Cluster

Worker Node - 2

XRay pod

X DaemonSet

XRay ClusterIP Service

XRay pod

X

UMS POD

U ReplicaSet

UMS Deployment

UMS POD

U

UMS POD

U

UMS POD

U

UMS LoadBalancer Service

AWS X-Ray

StackSimplify© Kalyan Reddy Daida

AWS Cloud

VPC

Public subnet

Availability Zone: us-east-1a

Private subnet

EKS Cluster

Amazon Route 53

Users

xraydemo.kubeoncloud.com
services-xray.kubeoncloud.com

Microservices Distributed Tracing with AWS X-Ray

Simple Email
Service (SES)

End User

Email

Amazon RDS DB

AWS Certificate
Manager

EKS Managed Node Groups

EC2 Worker Node-1

NAT gateway

Notification – ClusterIP Service

N

NS Pod

SMTP – External Name Service

UMS – NodePort Service

U

UMS Pod

MySQL – External Name Service

UMS – Ingress Service

Ingress Application Load Balancer

https:// xraydemo.kubeoncloud.com/usermgmt/notification-xray

AWS X-Ray

X

X-Ray Pod

X-Ray – ClusterIP Service

UMS Deployment

NS Deployment

XRay DaemonSet

StackSimplify© Kalyan Reddy Daida

AWS X-Ray – Service Map

StackSimplify© Kalyan Reddy Daida

AWS X-Ray - Traces

StackSimplify© Kalyan Reddy Daida

AWS X-Ray - Traces

StackSimplify© Kalyan Reddy Daida

AWS EKS

Microservices

Canary Deployments

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

Elastic Container
Registry

Code
Commit

Code
Build

Code
Pipeline

Simple Email
Service

X-Ray

StackSimplify© Kalyan Reddy Daida

• Canaries means incremental rollouts

• With canaries, the new version of the
application is slowly deployed to the
Kubernetes cluster while getting a very
small amount of live traffic

• In short, a subset of live users are
connecting to the new version while the
rest are still using the previous version

• Using canaries, we can detect
deployment issues very early while they
effect only a small subset of users

• If we encounter any issues with a canary,
the production version is still present,
and all traffic can simply be reverted to
it.

What are Canary Deployments?

User Management
Microservice

Notification
Microservice - V1

Notification
Microservice – V2

75% 25%

100%

StackSimplify© Kalyan Reddy Daida

Microservices – Canary Deployments

StackSimplify© Kalyan Reddy Daida

Canary Deployments out of box on Kubernetes
Pods

Canary – 50%

Prod – 75%

Canary – 25%

Prod – 90%

Canary – 10%

Prod – 50%

Pods
Pods

Downside
We need to incrementally increase
pods based on percentage distribution
we need for canary

StackSimplify© Kalyan Reddy Daida

Canary Deployments on Kubernetes with AWS App Mesh
Pods

Canary – 5%

Prod – 70%

Canary – 30%

Prod – 20%

Canary – 80%

Prod – 95%

Pods Pods

StackSimplify© Kalyan Reddy Daida

AWS EKS

Autoscaling

Horizontal Pod Autoscaler

StackSimplify© Kalyan Reddy Daida

• In a very simple note Horizontal Scaling means increasing and decreasing
the number of Replicas (Pods)
• HPA automatically scales the number of pods in a deployment, replication

controller, or replica set, stateful set based on that resource's CPU
utilization.
• This can help our applications scale out to meet increased demand or scale

in when resources are not needed, thus freeing up your worker nodes for
other applications.
• When we set a target CPU utilization percentage, the HPA scales our

application in or out to try to meet that target.
• HPA needs Kubernetes metrics server to verify CPU metrics of a pod.
• We do not need to deploy or install the HPA on our cluster to begin scaling

our applications, its out of the box available as a default Kubernetes API
resource.

Horizontal Pod Autoscaler – HPA - Intoduction

StackSimplify© Kalyan Reddy Daida

How HPA works?

Pod - 1 Pod - 2 Pod - N

Scale

Deployment

ReplicaSet

Replication Controller

StatefulSet

Application

Horizontal Pod Autoscaler

. . .

1. Query for Metrics

2. Calculate the Replica’s

3. Scale the app to desired replicas

Metrics Server

Kubernetes Cluster

15 secs

This control loop is executed every 15 seconds

StackSimplify© Kalyan Reddy Daida

How is HPA configured?

Scaling Metric: CPU Utilization

Target Value - CPU = 50%

Min Replicas = 2

Max Replicas = 10

kubectl autoscale deployment demo-deployment --cpu-percent=50 --min=1 --max=10

HPA requires

StackSimplify© Kalyan Reddy Daida

AWS EKS

Autoscaling

Vertical Pod Autoscaler

StackSimplify© Kalyan Reddy Daida

• VPA automatically adjusts the CPU and memory reservations for our
pods to help "right size" our applications.

• This adjustment can improve cluster resource utilization and free up
CPU and memory for other pods.

• Benefits
• Cluster nodes are used efficiently, because Pods use exactly what they need.
• Pods are scheduled onto nodes that have the appropriate resources

available.
• We don't have to run time-consuming benchmarking tasks to determine the

correct values for CPU and memory requests.
• Maintenance time is reduced, because the autoscaler can adjust CPU and

memory requests over time without any action on your part.

Vertical Pod Autoscaler – VPA - Introduction

StackSimplify© Kalyan Reddy Daida

VPA Components

VPA Admission Hook VPA UpdaterVPA Recommender

Every pod submitted to the k8s
cluster goes through this webhook
automatically which checks
whether a VerticalPodAutoscaler
object is referencing this pod or
one of its parents (a ReplicaSet, a
Deployment, etc.

Runs every 1 minute. If a pod is
not running in the calculated
recommendation range, it evicts
the currently running version of
this pod, so it can restart and go
through the VPA admission
webhook which will change the
CPU and memory settings for it,
before it can start.

Connects to the metrics-server in
the cluster, fetches historical and
current usage data (CPU and
memory) for each VPA-enabled
pod and generates
recommendations for scaling up or
down the requests and limits of
these pods.

StackSimplify© Kalyan Reddy Daida

AWS EKS

Autoscaling

Cluster Autoscaler

StackSimplify© Kalyan Reddy Daida

• Cluster Autoscaler is a tool that automatically adjusts the size of a
Kubernetes cluster when one of the following conditions is true:

• There are pods that failed to run in the cluster due to insufficient
resources.

• There are nodes in the cluster that have been underutilized for an
extended period of time and their pods can be placed on other
existing nodes.

• The Cluster Autoscaler modifies our worker node groups so that they
scale out when we need more resources and scale in when we have
underutilized resources.

Cluster Autoscaler - Introduction

StackSimplify© Kalyan Reddy Daida

AWS EKS

CloudWatch

Container Insights

Amazon RDSElastic Load
Balancing

Classic
Load Balancer

Network
Load Balancer

Application
Load Balancer

Certificate
Manager

Route53 Elastic Block
Store

Fargate
Profiles

Elastic Container
Registry

Code
Commit

Code
Build

Code
Pipeline

Simple Email
Service

X-Ray CloudWatch Simple
Notification Service

StackSimplify© Kalyan Reddy Daida

• A fully managed observability service for monitoring, troubleshooting and
alarming on our containerized applications.

• Container Insights to collect, aggregate, and summarize metrics and logs from
our containerized applications and microservices.

• The metrics include utilization for resources such as CPU, memory, disk, and
network.

• It also provides diagnostic information, such as container restart failures, to help
us isolate issues and resolve them quickly.

• We can also set CloudWatch alarms on metrics that Container Insights collects.

• The metrics that Container Insights collects are available in CloudWatch
automatic dashboards.

• We can analyze and troubleshoot container performance and logs data with
CloudWatch Logs Insights.

Container Insights

StackSimplify© Kalyan Reddy Daida

Container
Insights

Worker Node - 1
Kubernetes Cluster

Worker Node - 2

Fluentd pod

F Fluentd
DaemonSet

Fluentd pod

F

CW pod

C CloudWatch Agent
DaemonSet

CW pod

C

App Pod

N

NGINX Deployment

App pod

N
ReplicaSet

CloudWatch

Load Balancer Service

Developer or Operations User

Container Map

Container Resources

Performance Dashboards

Log Groups

Log Insights

Alarms

StackSimplify© Kalyan Reddy Daida

CloudWatch Container Insights Map

StackSimplify© Kalyan Reddy Daida

Automatic Performance Dashboard

StackSimplify© Kalyan Reddy Daida

THANK YOU

